4240 J. Phys. Chem. B, Vol. 109, No. 9, 2005
Nagai et al.
(10) Rice-Evans, C. A.; Miller, N. J.; Paganga, G. Free Rad. Biol. Med.
1996, 20, 933-956.
(11) Bors, W.; Saran, M. Free Rad. Res. Commus. 1987, 2, 289-294.
(12) Bors, W.; Heller, W.; Michel, C.; Saran, M. Flavonoids as
antioxidants: Determination of radical-scavenging efficiencies. In Methods
in Enzymology; Academic Press: New York, 1990; Vol. 186, pp 343-
355.
(13) Jovanovic, S. V.; Steenken, S.; Tosic, M.; Marjanovic, B.; Simic,
M. G. J. Am. Chem. Soc. 1994, 116, 4846-4851.
(14) Jovanovic, S. V.; Hara, Y.; Steenken, S.; Simic M. G. J. Am. Chem.
Soc. 1995, 117, 9881-9888.
(15) Terao, J.; Piskula, M.; Yao, Q. Arch. Biochem. Biophys. 1994, 308,
278-284.
(16) Ioku, K.; Tsushida, T.; Takei, Y.; Nakatani, N.; Terao, J. Biochim.
Biophys. Acta 1995, 1234, 99-104.
(17) Mukai, K.; Oka, W.; Watanabe, K.; Egawa, Y.; Nagaoka, S. J.
Phys. Chem. A. 1997, 101, 3746-3753.
(18) Hideg, E.; Kalai, T.; Hideg, K.; Vass, I. Biochemistry 1998, 37,
11405-11411.
(19) Yasui, H.; Sakurai, H. Biochem. Biophys. Res. Commun. 2000, 269,
131-136.
plastoquinol (PQH2), are well-known as the most popular lipid-
soluble antioxidants. γ-Tocopherol hydroquinone (γ-TQH2) is
considered to be a plastoquinol model, because both PQH2 and
γ-TQH2 have two methyl substituents at 2- and 3-positions and
a long alkyl chain at the 6-position, and thus the rate constants
kQ of PQH2 and γ-TQH2 are thought to be similar to each other.
1
The quenching rates of O2 by these antioxidants have been
reported in previous works (see Table 2).29,30 As described in a
previous section, the rate of the quenching reaction of 1O2 with
flavonoids increases in the order shown in eq 6 in ethanol
solution. The rate constants (kQ) obtained for rutin (1.21 × 108
M-1 s-1), quercetin (4.57 × 108), and myricetin (5.12 × 108)
are similar to (or larger than) those of R-tocopherol (2.06 ×
108 M-1 s-1), γ-tocopherol (1.38 × 108), UQ10H2 (1.58 × 108),
and γ-TQH2 (plastoquinol model) (1.17 × 108). Flavonoids are
found in high concentration in foods and plants. The present
kinetic study suggests that the above flavonoids function as
singlet oxygen quenchers in biological systems (such as cell
membranes, photosynthetic systems, etc.) and protect the
systems from oxidative damage. However, the quenching rates
of these flavonoids are 1-2 orders of magnitude smaller than
that (1.58 × 1010 M-1 s-1) of â-carotene, which is well-known
(20) Tournaire, C.; Sylvie, S.; Maurette, M.-T. J. Photochem. Photobiol.
B: Biol. 1993, 19, 205-215.
(21) Saito, I.; Matsuura, T.; Inoue, K. J. Am. Chem. Soc. 1983, 105,
3200-3206.
(22) Inoue, K.; Matsuura, T.; Saito, I. Tetrahedron 1985, 41, 2177-
2181.
(23) Young, R. H.; Wehrly, K.; Martin, R. L. J. Am. Chem. Soc. 1971,
93, 5774-5779.
1
as a representative O2 quencher.
(24) Stewart, J. P. J. Comput. Chem. 1989, 10, 209-220.
(25) Merkel, P. B.; Kearns, D. R. J. Am. Chem. Soc. 1972, 94, 7244-
7253.
(26) Fahrenholtz, S. R.; Doleiden, F. H.; Trozzolo, A. M.; Lamola, A.
A. Photochem. Photobiol. 1974, 20, 505-509.
(27) Clough, R. L.; Yee, B. G.; Foote, C. S. J. Am. Chem. Soc. 1979,
101, 683-686.
(28) Gorman, A. A.; Gould, I. R.; Hamblett, I.; Standen, M. C. J. Am.
Chem. Soc. 1984, 106, 6956-6959.
(29) Mukai, K.; Daifuku, K.; Okabe, K.; Tanigaki, T.; Inoue, K. J. Org.
Chem. 1991, 56, 4188-4192.
(30) Mukai, K.; Itoh, S.; Daifuku, K.; Morimoto, H.; Inoue, K. Biochim.
Biophys. Acta 1993, 1183, 323-326.
(31) Hotta, H.; Nagano, S.; Ueda, M.; Tsujino, Y.; Koyama, J.; Osakai,
T. Biochim. Biophys. Acta 2002, 1572, 123-132.
(32) Thomas, M. J.; Foote, C. S. Photochem. Photobiol. 1978, 27, 683-
693.
Acknowledgment. We are very grateful to Professor Kenzo
Inoue of Ehime University for his kind help in the preparation
of endoperoxide (EP). We are grateful to Professor Shin-ichi
Nagaoka of Ehime University for his helpful discussions. We
are also grateful to Mr. Takayuki Ishikawa of Canon Inc. for
his kind help in the semiempirical PM3 MO calculation. This
work was partly supported by the Grant-in-Aid for Scientific
Research on Priority Areas “Applications of Molecular Spins”
(Area 769, Proposal 15087104) from the Ministry of Education,
Culture, Sports, Science and Technology (MEXT), Japan (to
K.M.).
References and Notes
(1) Hertog, M. G. L.; Feskens, E. G. M.; Lollman, P. C. H.; Katan, M.
B.; Kromhout, D. The Lancet 1993, 342, 1007-1011.
(33) Mukai, K.; Kageyama, Y.; Ishida, T.; Fukuda, K. J. Org. Chem.
1989, 54, 552-556.
(2) Hertog, M. G. L.; Kromhout, D.; Aravans, C.; Blackburn, H.;
Buzina, R.; Fidanza, F.; Giampaoli, S.; Jansen, A.; Menotti, A.; Nedeljkovic,
S.; Pekkarinen, M.; Simic, B. S.; Toshima, H.; Feskens, E. J. M.; Hollman,
P. C. H.; Katan, M. Arch. Intern. Med. 1995, 155, 381-386.
(3) Jankun, J.; Selman, S. H.; Swiercz, R.; Skrzypczak-Jankun, E.
Nature 1997, 387, 561.
(4) Mukhtar, H.; Katiyar, S. K.; Agarwal, R. Cancer chemoprevention
by green tea components. In Diet and cancer, markers, preVention, and
treatment; Jacobs, M. M., Ed.; Plenum Press: New York, 1994.
(5) Middleton, E., Jr.; Kandaswami, C. The impact of plant flavonoids
on mammalian biology: implications for immunity, inflammation and
cancer. In The flaVonoids: AdVances in research since 1986; Harbone, J.
B., Ed.; Chapman & Hall; London, 1993; 619-652.
(6) Acker, S. A. B. E.; Berg, D.-J.; Tromp, M. N. J. L.; Griffioen D.
H.; Bennekom, W. P.; Vijgh, W. J. F.; Bast, A. Free Rad. Biol. Med. 1996,
20, 331-342.
(34) Hendrickson, H. P.; Sahafayen, M.; Bell, M. A.; Kaufman, A. D.;
Hadwiger, M. E.; Lunte, C. E. J. Pharmaceut. Biomed. Anal. 1994, 12,
335-341.
(35) Beutner, S.; Bloedorn, B.; Frixel, S.; Blanco, I. H.; Hoffmann, T.;
Martin, H.-D.; Mayer, B.; Noack, P.; Ruck, C.; Schmidt, M.; Schulke, I.;
Sell, S.; Ernst, H.; Haremza, S.; Seybold, D.; Sies, H.; Stahl, W.; Walsh,
R. J. Sci. Food Agric. 2001, 81, 559-568.
(36) Kumar, S.; Ramanathan, T.; Subramanian, K.; Steiner, T. J. Chem.
Crystallogr. 1998, 28, 931-933.
(37) Etter, M. C.; Urbanczyk-Lipkowska, Z.; Baer, S.; Barbara, P. F. J.
Mol. Struct. 1986, 144, 155-167.
(38) Rossi, M.; Rickles, L. F.; Halpin, W. A. Bioorg. Chem. 1986, 14,
55-69.
(39) Davies, M. J.; Truscott, J. W. J. Photochem. Photobiol. B 2001,
63, 114-125.
(40) Krasnovsky, A. A.; Kagan, V. E.; Minin, A. A. FEBS Lett. 1983,
155, 233-236.
(41) Kohno, Y.; Egawa, Y.; Itoh, S.; Nagaoka, S.; Takahashi, M.; Mukai,
K. Biochim. Biophys. Acta 1995, 1256, 52-56.
(42) Davies, M. J. Biochem. Biophys. Res. Commun. 2003, 305, 761-
770.
(7) Santos, A. C.; Uyemura, S. A.; Lopes, J. L. C.; Bazon, J. N.;
Mingatto, F. E.; Curti, C. Free Rad. Biol. Med. 1998, 24, 1455-1461.
(8) Arora, A.; Nair, M. G.; Strasburg, G. M. Free Radical Biol. Med.
1998, 24, 1355-1363.
(9) De Whalley C. V.; Rankin S. M.; Hoult, R. S.; Jessup, W.; Leake,
D. S. Biochem. Pharmacol. 1990, 39, 1743-1750.