palladium-catalyzed Heck-type reactions of 3-halo-substituted
indoles5 are two well-established methods for the functional-
ization at the 3-position of the indole nucleus. During the past
several years, palladium-catalyzed intramolecular or intermo-
lecular direct coupling of indoles with alkenes have also been
developed by the utilization of various oxidants to regenerate
the catalytically active Pd(II) species in situ.6 Billups’ group
reported a palladium-catalyzed nonselective allylation of indoles
with allyl acetate, allylic alcohols, or 1,3-dienes, affording a
mixture.7 Recently, the Tamura group has also found that under
the catalysis of palladium, Et3B can promote the C-3-selective
allylation of indoles with a variety of allyl alcohols.8 In both
cases, a π-allylpalladium intermediate may be involved. In our
previous work,9 we have demonstrated an efficient metal- and
halogen-free route to stereoselective synthesis of benzocycles
via TFA-mediated intramolecular Friedel-Crafts reactions of
6-acetoxy-4-alkenylarenes.9a Also, a new functionalization of
indoles via the Pd(OAc)2-catalyzed reaction of indoles with
2-acetoxymethyl-substituted electron-deficient alkenes to afford
3-(2-methoxycarbonyl-2-propenyl)indoles was reported, in which
the â-OAc functional group was used for the regeneration of
Pd(II) species.9c However, this reaction usually needed a long
reaction time and high temperature and suffered from low yield
and poor diversity for the starting indoles. Herein, we wish to
report our recently developed new catalytic systems for the
coupling of indoles with 2-acetoxymethyl-substituted electron-
deficient alkenes.
Palladium-Catalyzed Functionalization of Indoles
with 2-Acetoxymethyl-Substituted
Electron-Deficient Alkenes
Shengming Ma,* Shichao Yu, Zhihua Peng, and Hao Guo
State Key Laboratory of Organometallic Chemistry, Shanghai
Institute of Organic Chemistry, Chinese Academy of Sciences,
354 Fenglin Lu, Shanghai 200032, P. R. China
ReceiVed July 26, 2006
New functionalizations of indoles via palladium-catalyzed
reaction of indoles and 2-acetoxymethyl-substituted electron-
deficient alkenes are reported. It was found that for N-
protected indoles the reaction proceeded smoothly in the
presence of 5 mol % of Pd(acac)2 and 10 mol % of PPh3 at
80 °C in HOAc, while for N-unprotected indoles, the reaction
was carried out by using 5 mol % of Pd(dba)2 or 2.5 mol %
of Pd2(dba)3‚CHCl3 with 10 mol % of 2,2′-bipyridine as the
catalyst in toluene. This strategy allows the selective instal-
lation of electron-deficient olefin functionality at the 3-posi-
tion of indoles, which might be difficult to obtain by other
methods and can be further elaborated.
(3) (a) Hegedus, L. S. Angew. Chem., Int. Ed. 1988, 27, 1113. (b) Antilla,
J. C.; Klapars, A.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 11684.
(c) Zhou, J.; Tang, Y. J. Am. Chem. Soc. 2002, 124, 9030. (d) Ferreira, E.
M.; Stoltz, B. M. J. Am. Chem. Soc. 2003, 125, 9578. (e) Coleman, C. M.;
Oshea, D. F. J. Am. Chem. Soc. 2003, 125, 4054. (f) Bandini, M.; Cozzi,
P. G.; Melchiorre, P.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43,
84. (g) Baran, P. S.; Richter, J. M. J. Am. Chem. Soc. 2004, 126, 7450.
(4) (a) Szmuszkovicz, J. J. Am. Chem. Soc. 1957, 79, 2819-2821. (b)
Bu¨chi, G.; Mak, C. J. Org. Chem. 1977, 42, 1784-1786. (c) Ranganathan,
D.; Rao, C, B.; Ranganathan, S.; Mehrotra, A. K.; Iyengar, R. J. Org. Chem.
1980, 45, 1185-1189. (d) Gilchrist, T. L.; Roberts, T. G. J. Chem. Soc.,
Perkin. Trans. 1983, 1283-1292. (e) Bandini, M.; Fagioli, M.; Melchiorre,
P.; Melloni, A.; Umani-Ronchi, A. Synthesis 2002, 1110-1114. (f) Yadav,
J. S.; Reddy, B. V. S.; Sabitha, G. Synthesis 2001, 2165-2169. (g) Evans,
D. A.; Scheidt, K. A.; Frandrick, K. R.; Lam, H. W.; Wu, J. J. Am. Chem.
Soc. 2003, 125, 10780-10781. (h) Agnusdei, M.; Bandini, M.; Melloni,
A.; Umani-Ronchi, A. J. Org. Chem. 2003, 68, 7126-7129.
(5) (a) Frank, W. C.; Kim, Y. C.; Heck, R. F. J. Org. Chem. 1978, 43,
2947-2949. (b) Vaillancourt, V.; Albizati, K. F. J. Am. Chem. Soc. 1993,
115, 3499-3502. (c) Harrigton, P. J.; Hegedus, L. S. J. Am. Chem. Soc.
1987, 109, 4335-4338. (d) Brown, M.; Kerr, M. A. Tetrahedron Lett. 2001,
42, 983-985.
Indoles and their derivatives constitute an important class of
biologically active natural products, which play a fundamental
role in bioorganic chemistry.1 For this reason, the efficient
synthesis and functionlization of indoles derivatives2,3 have
attracted the interest of many synthetic chemists. The Lewis
acid catalyzed alkylation between indoles and electrophiles4 and
* To whom correspondence should be addressed. Tel: 86-21 54925147.
Fax: 86-21 64167510.
(1) (a) Sundberg, R. J. The Chemistry of Indoles; Academic Press: New
York, 1970. (b) Sexton, J. E. Indoles, Part 4: The monoterpenoid indole
alkaloids; Wiley: New York, 1983. (c) Sundberg, R. J. Indoles; Academic
Press: London, 1996. (d) Joule, J. A.; Mills, K. Heterocyclic Chemistry,
4th ed.; Blackwell Science: Oxford, 2000.
(6) (a) Jia, C.; Lu, W.; Kitamura, T.; Fujiwara, Y. Org. Lett. 1999, 1,
2097. (b) Lu, W.; Jia, C.; Kitamura, T.; Fujiwara, Y. Org. Lett. 2000, 2,
2927. (c) Liu, C.; Han, X.; Wang, X.; Widenhoefer, R. A. J. Am. Chem.
Soc. 2004, 126, 3700. (d) Liu, C.; Widenhoefer, R. A. J. Am. Chem. Soc.
2004, 126, 10250. (e) Ferreira, E. M.; Stoltz, B. M. J. Am. Chem. Soc.
2003, 125, 9578. (f) Zhang, H.; Ferreira, E. M.; Stoltz, B. M. Angew. Chem.,
Int. Ed. 2004, 43, 6144. (g) Beccalli, E. M.; Broggini, G. Tetrahedron Lett.
2003, 44, 1919. (h) Abbiati, G.; Beccalli, E. M.; Broggini, G. Zoni, C. J.
Org. Chem. 2003, 68, 7625. (i) Sezen, B.; Sames, D.; J. Am. Chem. Soc.
2003, 125, 5274. (j) Lane, B. S.; Sames, D. Org. Lett. 2004, 6, 2897. (k)
Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew.
Chem., Int. Ed. 2005, 44, 3125.
(7) Billups, W. E.; Erkes, R. S.; Reed, L. E. Synth. Commun. 1980, 10,
147.
(8) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem.
Soc. 2005, 127, 4592.
(9) (a) Ma, S.; Zhang, J. Tetrahedron 2003, 59, 6273. (b) Ma, S.; Zhang,
J. Tetrahedron Lett. 2002, 43, 3435. (c) Ma, S.; Yu, S. Tetrahedron Lett.
2004, 45, 8419.
(2) (a) Kamijo, S.; Yamamoto, Y. Angew. Chem., Int. Ed. 2002, 41, 3230.
(b) Rutherford, J. L.; Rainka, M. P.; Buchwald, S. L. J. Am. Chem. Soc.
2002, 124, 15168. (c) Arisawa, M.; Terada, Y.; Nakagawa, M.; Nishida,
A. Angew. Chem., Int. Ed. 2002, 41, 4732. (d) Siebeneicher, H.; Bytschkov,
I.; Doye, S. Angew. Chem., Int. Ed. 2003, 42, 3042. (e) Kuwano, R.; Sato,
K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem. Soc. 2000, 122, 7614.
(f) Willis, M. C.; Brace, G. N.; Holmes, I. P. Angew. Chem., Int. Ed. 2005,
44, 403. (g) Wagaw, S.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc.
1999, 121, 10251. (h) Tokuyama, H.; Yamashita, T.; Reding, M. T.;
Kaburagi, Y.; Fukuyama, T. J. Am. Chem. Soc. 1999, 121, 3791. (i)
Barluenga, J.; Sanz, R.; Granados, A.; Fananas, F. J. J. Am. Chem. Soc.
1998, 120, 4865. (j) Aoki, K.; Peat, A. J.; Buchwald, S. L. J. Am. Chem.
Soc. 1998, 120, 3068. (k) Okamoto, S.; Iwakubo, M.; Kobayashi, K.; Sato,
F. J. Am. Chem. Soc. 1997, 119, 6984.
10.1021/jo061546s CCC: $33.50 © 2006 American Chemical Society
Published on Web 12/01/2006
J. Org. Chem. 2006, 71, 9865-9868
9865