comparison, MVLIF-2 adopts the single diamond (dia) topology
Fig. 2d), also with a chiral symmetry. The structure of MVLIF-
can be understood as parallel helical chains of Li(bim) inter-
connected by the neutral bis(imidazolyl)methane (Fig. 2a). In
MVLIF-2, zig-zag chains of Li(im) are further bridged by the
neutral bis(2-methyl-imidazolyl)methane ligand (Fig. 2b) into the
T. Hupp, Acc. Chem. Res., 2010, 43, 1166; (f) B. Kesanli and W. Lin,
Coord. Chem. Rev., 2003, 246, 305; (g) R. E. Morris and P. S. Wheatley,
Angew. Chem., Int. Ed., 2008, 47, 4966; (h) E. R. Parnham and R. E.
Morris, Acc. Chem. Res., 2007, 40, 1005.
3 (a) X. Bu, P. Feng and G. D. Stucky, Science, 1997, 278, 2080; (b) P.
Feng, X. Bu and G. D. Stucky, Nature, 1997, 388, 735; (c) N. Zheng,
X. Bu, B. Wang and P. Feng, Science, 2002, 298, 2366.
(a) B. Chen, C. Liang, J. Yang, D. S. Contreras, Y. L. Clancy, E. B.
Lobkovsky, O. M. Yaghi and S. Dai, Angew. Chem., Int. Ed., 2006, 45,
1390; (b) B. Chen, L. Wang, F. Zapata, G. Qian and E. B. Lobkovsky,
J. Am. Chem. Soc., 2008, 130, 6718; (c) B. Chen, S. Ma, F. Zapata, F.
R. Fronczek, E. B. Lobkovsky and H.-C. Zhou, Inorg. Chem., 2007, 46,
(
1
4
3
D framework.
The gas sorption properties of both compounds have also been
studied, and both compounds showed the ability to reversibly
adsorb hydrogen gas (Fig. 3). The volumetric uptake capacity is
1
233.
3
-3
3
-3
3
1
1.4 cm cm and 39.4 cm cm at 1 atm and 77 K for MVLIF-
and MVLIF-2, respectively. No significant N adsorption was
5
6
(a) S. R. J. Oliver, Chem. Soc. Rev., 2009, 38, 1868; (b) H. Fei, D. L.
Rogow and S. R. J. Oliver, J. Am. Chem. Soc., 2010, 132, 7202.
(a) Y.-Q. Tian, C.-X. Cai, Y. Ji, X.-Z. You, S.-M. Peng and G.-H. Lee,
Angew. Chem., Int. Ed., 2002, 41, 1384; (b) Y.-Q. Tian, C.-X. Cai, X.-M.
Ren, C.-Y. Duan, Y. Xu, S. Gao and X.-Z. You, Chem.–Eur. J., 2003,
9, 5673; (c) Y.-Q. Tian, Y. M. Zhao, Z. X. Chen, G. N. Zhang, L. H.
Weng and D. Y. Zhao, Chem.–Eur. J., 2007, 13, 4146; (d) Y.-Q. Tian,
S.-Y. Yao, D. Du, K.-H. Cui, D.-W. Guo, G. Zhang, Z.-X. Chen and
D.-Y. Zhao, Chem.–Eur. J., 2009, 16, 1137.
2
observed, likely due to the limitation of the pore size. To further
enhance the gas sorption properties, the creation of porous
materials with larger pore size and greater pore volume would
be beneficial. The successful synthesis of MVLIF-1 and MVLIF-
2
certainly demonstrates the feasibility for the synthesis of other
members of the MVLIF family through the judicious choice of L1
and L2 ligands.
7
8
(a) X.-C. Huang, Y.-Y. Lin, J.-P. Zhang and X.-M. Chen, Angew.
Chem., Int. Ed., 2006, 45, 1557; (b) J.-P. Zhang and X.-M. Chen, Chem.
Commun., 2006, 1689; (c) X.-C. Huang, J.-P. Zhang, Y.-Y. Lin, X.-L.
Yu and X.-M. Chen, Chem. Commun., 2004, 1100.
(a) A. Phan, C. Doonan, F. J. Uribe-Romo, C. B. Knobler, M. O’Keeffe
and O. M. Yaghi, Acc. Chem. Res., 2009, 43, 58; (b) H. Hayashi, A.
P. C oˆ t e´ , H. Furukawa, M. O’Keeffe and O. M. Yaghi, Nat. Mater.,
2
007, 6, 501; (c) K. S. Park, Z. Ni, A. P. C oˆ t e´ , J. Y. Choi, R. D. Huang,
F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe and O. M. Yaghi, Proc.
Natl. Acad. Sci. U. S. A., 2006, 103, 10186; (d) R. Banerjee, A. Phan,
B. Wang, C. Knobler, H. Furukawa, M. O’Keeffe and O. M. Yaghi,
Science, 2008, 319, 939; (e) B. Wang, A. P. C oˆ t e´ , H. Furukawa, M.
O’Keeffe and O. M. Yaghi, Nature, 2008, 453, 207.
9
(a) T. Wu, X. Bu, J. Zhang and P. Feng, Chem. Mater., 2008, 20, 7377;
(
b) T. Wu, X. Bu, R. Liu, Z. Lin, J. Zhang and P. Feng, Chem.–Eur. J.,
008, 14, 7771.
2
1
1
0 (a) Y. Liu, V. C. Kravtsov, R. Larsen and M. Eddaoudi, Chem.
Commun., 2006, 1488; (b) Y. Liu, V. C. Kravtsov and M. Eddaoudi,
Angew. Chem., Int. Ed., 2008, 47, 8446; (c) D. F. Sava, V. C. Kravtsov,
F. Nouar, L. Wojtas, J. F. Eubank and M. Eddaoudi, J. Am. Chem.
Soc., 2008, 130, 3768; (d) D. F. Sava, V. C. Kravtsov, J. Eckert, J. F.
Eubank, F. Nouar and M. Eddaoudi, J. Am. Chem. Soc., 2009, 131,
Fig. 3
2
H uptake of MVLIF-1 and MVLIF-2 at 1 atm and 77 K.
1
0394; (e) M. H. Alkordi, J. A. Brant, L. Wojtas, V. C. Kravtsov, A. J.
Caims and M. Eddaoudi, J. Am. Chem. Soc., 2009, 131, 17753.
1 D. M. Schubert, D. T. Natan, D. C. Wilson and K. I. Hardcastle, Cryst.
Growth Des., 2011, 11, 843.
In conclusion, two types of 3D imidazolate frameworks con-
taining uninodal tetrahedrally coordinated lithium ions have been
successfully realized by applying a mixed valent ligand synthetic
route. The framework densities of MVLIF-1 and MVLIF-2 reach
as low as 0.766 g cm- and 0.778 g cm , respectively, which is a
direct result of extremely lightweight elements (Li, C and N) used
in the synthesis strategy. Both compounds can reversibly adsorb
12 (a) B. F. Abrahams, M. J. Grannas, T. A. Hudson and R. Robson,
Angew. Chem., Int. Ed., 2010, 49, 1087; (b) D. Banerjee, S. J. Kim and
J. B. Parise, Cryst. Growth Des., 2009, 9, 2500; (c) D. Banerjee, L. A.
Borkowski, S. J. Kim and J. B. Parise, Cryst. Growth Des., 2009, 9, 4922;
(d) D. J. MacDougall, J. J. Morris, B. C. Noll and K. W. Henderson,
Chem. Commun., 2005, 456.
3
-3
1
3 (a) K. Sumida, M. R. Hill, S. Horike, A. Dailly and J. R. Long, J.
Am. Chem. Soc., 2009, 131, 15120; (b) M. Dinc a˘ and J. R. Long, J. Am.
Chem. Soc., 2005, 127, 9376; (c) K. Sumida, C. M. Brown, Z. R. Herm,
S. Chavan, S. Bordiga and J. R. Long, Chem. Commun., 2011, 47, 1157.
4 S. R. Caskey, A. G. Wong-Foy and A. J. Matzger, J. Am. Chem. Soc.,
H . This work demonstrates a general method for constructing the
2
mixed valent ligand lithium imidazolate frameworks. Further opti-
mization in the ligand design could result in a family of more open
architectures that could lead to promising gas sorption properties.
This work was supported by the Department of Energy-Basic
Energy Sciences under Contract No. DE-SC0002235. We thank
Dr. Khanh Nguyen for his help on the NMR measurement.
1
1
2
008, 130, 10870.
5 (a) T. Loiseau, L. Lecroq, C. Volkringer, J. Marrot, G. F e´ rey, M.
Haouas, F. Taulelle, S. Bourrelly, P. L. Llewellyn and M. Latroche,
J. Am. Chem. Soc., 2006, 128, 10223; (b) T. Loiseau, C. Serre, C.
Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. F e´ rey,
Chem.–Eur. J., 2004, 10, 1373.
Notes and references
1
6 A. Comotti, S. Bracco, P. Sozzani, S. Horike, R. Matsuda, J. Chen,
M. Takata, Y. Kubota and S. Kitagawa, J. Am. Chem. Soc., 2008, 130,
13664.
1
2
(a) S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan and E. M.
Flanigen, J. Am. Chem. Soc., 1982, 104, 1146; (b) A. K. Cheetham, G.
F e´ rey and T. Loiseau, Angew. Chem., Int. Ed., 1999, 38, 3268; (c) S. R.
Batten and R. Robson, Angew. Chem., Int. Ed., 1998, 37, 1460.
(a) G. F e´ rey, Chem. Soc. Rev., 2008, 37, 191; (b) G. F e´ rey, C. Mellot-
Draznieks, C. Serre and F. Millange, Acc. Chem. Res., 2005, 38, 217;
17 (a) X. Zhao, T. Wu, S. Zheng, L. Wang, X. Bu and P. Feng, Chem.
Commun., 2011, 47, 5536; (b) S. Zheng, Y. Li, T. Wu, R. A. Nieto, P.
Feng and X. Bu, Chem.–Eur. J., 2010, 16, 13035.
18 (a) J. Zhang, T. Wu, C. Zhou, S. Chen, P. Feng and X. Bu, Angew.
Chem., Int. Ed., 2009, 48, 2542; (b) T. Wu, J. Zhang, C. Zhou, L. Wang,
X. Bu and P. Feng, J. Am. Chem. Soc., 2009, 131, 6111; (c) T. Wu, J.
Zhang, X. Bu and P. Feng, Chem. Mater., 2009, 21, 3830.
(
c) O. M. Yaghi, M. O’Keeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi
and J. Kim, Nature, 2003, 423, 705; (d) S. Kitagawa, R. Kitaura and S.
Noro, Angew. Chem., Int. Ed., 2004, 43, 2334; (e) O. K. Farha and J.
8
074 | Dalton Trans., 2011, 40, 8072–8074
This journal is © The Royal Society of Chemistry 2011