Table 1 One-pot three-component synthesis of 3-halofurans 3
Entry
Acid chloride 1
Alkyne 2
3-Halofuran 3 (yield)
a
1
R 5 Ph (1a)
2
R 5 H (2a)
1
3a (R 5 Ph , R 5 H, Hal 5 Cl, 63%)
2
1
a
1
R 5 p-MeOC
1
2
2
6
H
4
(1b)
2a
R 5 Et (2b)
3b (R 5 p-MeOC
6
H
4
, R 5 H, Hal 5 Cl, 71%)
a
2
1
2
3c (R 5 Ph, R 5 Et, Hal 5 Cl, 70%)
3
1a
R 5 2-thienyl (1c)
a
1
1
2
4
2b
2b
2a
2a
2a
2a
2b
3d (R 5 2-thienyl, R 5 Et, Hal 5 Cl, 59%)
1 2
a
1
5
R 5 PhCHLCH (1d)
R 5 1-cyclohexenyl (1e)
3e (R 5 PhCHLCH, R 5 Et, Hal 5 Cl, 73%)
a
1
1
2
6
3f (R 5 1-cyclohexenyl, R 5 H, Hal 5 Cl, 64%)
1 2
3g (R 5 Ph, R 5 H, Hal 5 I, 63%)
b
7
1a
1b
b
1
2
8
3h (R 5 p-MeOC
6
H
4
, R 5 H, Hal 5 I, 63%)
b
1
1
3i (R 5 p-NO
2
, R 5 H, Hal 5 I, 40%)
9
R 5 p-NO
1a
2
C
6
H
4
(1f)
2
2
C
3j (R 5 Ph, R 5 Et, Hal 5 I, 72%)
6
H
4
b
1
1
0
a
b
2
.0 equiv. of NaCl, 60 uC, 20 h. 5 equiv. of NaI, r.t., 2 h.
The authors gratefully acknowledge DFG (Graduiertenkolleg
850), MORPHOCHEM AG, Fonds der Chemischen Industrie,
and Dr Otto-R o¨ hm Ged a¨ chtnisstiftung, and cordially thank Ms
Michaela Schmitt for experimental assistance.
Alexei S. Karpov, Eugen Merkul, Thomas Oeser and
Thomas J. J. M u¨ ller*
Organisch-Chemisches Institut der Ruprecht-Karls-Universit a¨ t
Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.
E-mail: Thomas_J.J.Mueller@urz.uni-heidelberg.de;
Fax: +49(0)6221546579; Tel: +49(0)6221546207
1
2
2 6 4
Fig. 1 Molecular structure of 3i (R 5 p-NO C H , R 5 H, Hal 5 I).
Notes and references
Only 1 of 4 independent molecules is shown. The enumeration is adjusted.
¯
, M 5 315.1, triclinic, space group P1,
{
Crystal data for 3i: C10
H
6
INO
3
˚
a 5 8.2679(1), b 5 11.0675(1), c 5 22.2477(2) A, a 5 84.927(1)u,
3
˚
b 5 83.749(1)u, c 5 88.385(1)u, V 5 2015.39(4) A , T 5 200(2) K, Z 5 8,
r 5 2.077 g cm , crystal dimensions 0.50 6 0.34 6 0.30 mm , Mo K
23
3
a
2
1
˚
radiation, m 5 3.162 mm , l 5 0.71073 A. There are four independent
molecules in the asymmetric unit. Data were collected on a Bruker Smart
APEX diffractometer and a total of 9160 of the 20833 reflections were
2
unique [R(int) 5 0.0201]. Refinement on F , wR
2
5 0.049 (observed
1
reflections), R 5 0.021 for [I . 2s(I)]. CCDC 260725. See http://
www.rsc.org/suppdata/cc/b5/b502324f/ for crystallographic data in CIF or
other electronic format.
1
2
B. A. Keay and P. W. Dibble, in Comprehensive Heterocyclic Chemistry
II, ed. A. R. Katritzky, C. W. Rees and E. F. V. Scriven, Elsevier,
Oxford, 1997, vol. 2, pp. 395.
For pharmaceuticals, see e.g.: D. S. Mortensen, A. L. Rodrigues,
K. E. Karlson, J. Sun, B. S. Katzenellenbogen and
J. A. Katzenellenbogen, J. Med. Chem., 2001, 44, 3838.
C. Liu and T. Luh, Org. Lett., 2002, 4, 4305.
3
4
Scheme 3 Sequential Sonogashira–addition–cyclocondensation–Suzuki
synthesis of substituted 3-arylfurans 5.
For reviews, see e.g.: R. C. D. Brown, Angew. Chem. Int. Ed., 2005, 44,
8
50; G. Zeni and R. C. Larock, Chem. Rev., 2004, 104, 2285.
For recent reviews, see e.g.: T. L. Gilchrist, J. Chem. Soc., Perkin Trans.
, 1999, 2849; X. L. Hou, H. Y. Cheung, T. Y. Hon, P. L. Kwan,
T. H. Lo, S. Y. Tong and H. N. C. Wong, Tetrahedron, 1998, 54,
955.
5
1
boronic acids 4 and sodium carbonate, the substituted 3-arylfurans
1
6
5
were obtained in decent yields (Scheme 3).
The new one-pot Sonogashira–addition–cyclocondensation–
1
6 For Pd-catalyzed transformations of acyclic precursors to furans, see
e.g.: A. Jeevanandam, A. Ghule and Y.-C. Ling, Curr. Org. Chem.,
2002, 6, 841; D. K. Barma, A. Kundu, R. Baati, C. Mioskowski and
J. R. Falck, Org. Lett., 2002, 4, 1387.
For investigations on cross-coupling of halofurans, see e.g.:
M. W. Hooper and J. F. Hartwig, Organometallics, 2003, 22, 3394.
For the preparation of 3-lithiofuran, see e.g.: C. C. Bond and
M. Hooper, Synthesis, 1974, 443.
For the recent synthesis of 3-substituted 4-chlorofurans, see e.g.:
R. N. Ram and I. Charles, Chem. Commun., 2003, 2267.
Suzuki synthesis of substituted 3-arylfurans 5 proceeds in reason-
able yields that are almost comparable (one-pot sequence to 5a:
50%) with a stepwise procedure (overall yield of 5a: 45%).
7
8
9
In conclusion, we have developed a novel consecutive three-
component coupling–addition–cyclocondensation synthesis of
3-halofurans, highly versatile building blocks in organic synthesis.
In addition, a new sequential Sonogashira–addition–cycloconden-
sation–Suzuki multi-component furan synthesis was readily
10 For the recent synthesis and further transformations of b-iodofurans,
see e.g.: G. M. M. El-Taeb, A. B. Evans, S. Jones and D. W.
Knight, Tetrahedron Lett., 2001, 42, 5945; C. Schultz-Fademrecht,
M. Zimmermann, R. Fr o¨ hlich and D. Hoppe, Synlett, 2003,
elaborated as
a new diversity-oriented consecutive multi-
component access to substituted 3-arylfurans. Studies addressing
the scope of this sequence to enhance molecular diversity are
currently under investigation.
1969; S. P. Bew and D. W. Knight, Chem. Commun., 1996,
1007.
2
582 | Chem. Commun., 2005, 2581–2583
This journal is ß The Royal Society of Chemistry 2005