RSC Advances
Paper
Acknowledgements
This work was supported by the National Natural Science
Foundation of China (21072076, 51103057, 51073071), the
Natural Science Foundation of Jilin Province (201215009), and
the Project 985-Automotive Engineering of Jilin University.
Notes and references
1 (a) P. Terech and R. G. Weiss, Chem. Rev., 1997, 97, 3133;
´
´
(b) A. Perez, J. L. Serrano, T. Sierra, A. Ballesteros, D. de Saa
and J. Barluenga, J. Am. Chem. Soc., 2011, 133, 8110; (c)
A. Ajayaghosh, V. K. Praveen and C. Vijayakumar, Chem.
Soc. Rev., 2008, 37, 109; (d) T. Kato, T. Yasuda, Y. Kamikawa
and M. Yoshio, Chem. Commun., 2009, 729; (e) P. Xue,
R. Lu, G. Chen, Y. Zhang, H. Nomoto, M. Takafuji and
H. Ihara, Chem.–Eur. J., 2007, 13, 8231.
Scheme 2 Synthetic route of TC6.
recrystallization from tetrahydrofuran for further 1H NMR, FT-
IR measurements, and elemental analysis; yield = 80%.
1H NMR (300 MHz, DMSO) (ppm, from TMS): 10.67 (s, 2H),
10.48 (s, 2H), 8.05 (s, 4H), 7.24 (s, 4H), 4.02 (t, J = 6.28 Hz, 8H),
3.93 (t, J = 6.38 Hz, 4H), 1.80–1.60 (m, 12H), 1.51–1.41 (m,
12H), 1.31 (m, J = 7.20, 4.02 Hz, 24H), 0.89 (m, J = 7.31, 3.65 Hz,
18H). FT-IR (KBr, pellet, cm21): 3188, 2956, 2930, 2871, 2850,
1642, 1603, 1852, 1488, 1468, 1459, 1425, 1383, 1340, 1231,
1179, 1133, 1112, 1000, 857, 721, 666. Elemental analysis:
calculated for C58H90N4O10 (%), C, 69.43; H, 9.04; N, 5.58;
found: C, 69.32; H, 9.07; N, 5.47.
2 (a) D. Philip and J. F. Stoddart, Angew. Chem., Int. Ed. Engl.,
1996, 35, 1154; (b) D. S. Lawrence, T. Jiang and M. Levitt,
Chem. Rev., 1995, 95, 2229.
3 (a) F. H. Beijer, H. Kooijman, A. L. Spek, R. P. Sijbesma and
E. W. Meijer, Angew. Chem., Int. Ed., 1998, 37, 75; (b) F.
H. Beijer, R. P. Sijbesma, H. Kooijman, A. L. Spek and E.
W. Meijer, J. Am. Chem. Soc., 1998, 120, 6761.
4 R. P. Sijbesma, F. H. Beijer, L. Brunsveld, B. J. B. Folmer, J.
H. K. K. Hirschberg, R. F. M. Lange, J. K. L. Lowe and E.
W. Meijer, Science, 1997, 278, 1601.
Characterization
1H NMR spectra were recorded with a Bruker Avance 500 MHz
or Mercury-300BB 300 MHz spectrometer, using chloroform-d
or DMSO-d6 as solvent and tetramethylsilane (TMS) as an
internal standard (d = 0.00). Transmission electron microscopy
(TEM) images were taken with a JEOL2010 microscope,
operating at an acceleration voltage of 100 kV. Field emission
scanning electron microscopy (FE-SEM) images were taken
with a JSM-6700F apparatus. X-Ray diffraction was carried out
with a Bruker Avance D8 X-ray diffractometer. FT-IR spectra
were recorded with a Perkin-Elmer spectrometer (Spectrum
One B). The xerogels were obtained by freezing and pumping
the organogel of TC6 for 12 h, and then the xerogels were
pressed into a tablet with KBr for FT-IR measurements. UV-Vis
absorption spectra were recorded on a Shimadzu UV-2550
spectrometer, and photoluminescence was measured on a
Perkin-Elmer LS 55 spectrometer. Differential scanning
calorimetry (DSC) curve was obtained on a Netzsch DSC 204
instrument. Optical textures were observed under a Leica
DMLP microscope equipped with a Leitz 350 heating stage.
Gelation test: the weighted gelator was mixed in a capped
sealed test tube [3.5 cm (height) 6 0.5 cm (radius)] with an
appropriate amount of solvent, and the mixture was heated
until the solid dissolved. The sample vial was cooled
spontaneously to 20 uC, and then turned upside down. When
an opaque gel formed, the solvent therein was immobilized at
this stage. Melting temperature (Tm) was determined by the
‘falling drop’ method. An inverted gel was immersed in a water
bath initially at room temperature. The water bath was heated
slowly up to the point at which the gel fell due to the force of
gravity, i.e. the Tm.
5 (a) J. H. Wan, L. Y. Mao, Y. B. Li, Z. F. Li, H. Y. Qiu, C. Wang
and G. Q. Lai, Soft Matter, 2010, 6, 3195; (b) A. Dawn,
T. Shiraki, S. Haraguchi, H. Sato, K. Sada and S. Shinkai,
Chem.–Eur. J., 2010, 16, 3676; (c) M. Wang, D. Zhang,
G. Zhang and D. Zhu, Chem. Phys. Lett., 2009, 475, 64; (d)
M. K. Nayak, J. Photochem. Photobiol., A, 2011, 217, 40; (e)
P. Duan and M. Liu, Langmuir, 2009, 25, 8706; (f) N. Yan,
G. He, H. Zhang, L. Ding and Y. Fang, Langmuir, 2010, 26,
5909.
6 (a) R. J. H. Hafkamp, M. C. Feiters and R. J. M. Nolte, J. Org.
Chem., 1999, 64, 412; (b) K. Yoza, N. Amanokura, Y. Ono
Akao, T. H. Shinmori, M. Takeuchi, S. Shinkai and D.
N. Reinhoudt, Chem.–Eur. J., 1999, 5, 2722; (c) O. Gronwald
and S. Shinkai, Chem.–Eur. J., 2001, 7, 43284; (d) S. Tamaru,
R. Luboradzki and S. Shinkai, Chem. Lett., 2001, 336; (e)
A. Ajayaghosh and S. J. George, J. Am. Chem. Soc., 2001, 123,
5148; (f) A. Ajayaghosh, R. Varghese, V. K. Praveen and
S. Mahesh, Angew. Chem., Int. Ed., 2006, 45, 3261; (g)
T. Hyeon Kim, N. Y. Kwon and T. S. Lee, Tetrahedron Lett.,
2010, 51, 5596.
7 (a) J. van Esch, S. D. Feyter, R. M. Kellogg, F. D. Schryver
and B. L. Feringa, Chem.–Eur. J., 1997, 3, 1238; (b) J. van
Esch, F. Schoonbeek, M. de Loos, H. Kooijman, A. L. Spek,
R. M. Kellogg and B. L. Feringa, Chem.–Eur. J., 1999, 5, 937;
(c) A. J. Carr, R. Melendez, S. J. Geib and A. D. Hamilton,
Tetrahedron Lett., 1998, 39, 7447; (d) F. S. Schoonbeek,
J. van Esch, B. Wegewijs, D. B. A. Rep, M. P. de Haas, T.
M. Klapwijk, R. M. Kellogg and B. L. Feringa, Angew. Chem.,
Int. Ed., 1999, 38, 1393; (e) L. A. Estroff and A. D. Hamilton,
Angew. Chem., Int. Ed., 2000, 39, 3447; (f) G. Wang and A.
D. Hamilton, Chem.–Eur. J., 2002, 8, 1954; (g) K. Yabuuchi,
E. Marfo-Owusu and T. Kato, Org. Biomol. Chem., 2003, 1,
3464; (h) F. Wurthner, B. Hanke, M. Lysetska, G. Lambright
This journal is ß The Royal Society of Chemistry 2013
RSC Adv., 2013, 3, 12109–12116 | 12115