Communications
1
functionalization sequence (Ar I), the expected oxindole 4p
Bulger, Angew. Chem. 2006, 118, 7292 – 7344; Angew. Chem. Int.
Ed. 2006, 45, 7134 – 7186. For a recent book, see: Domino
Reactions in Organic Synthesis (Eds.: L. F. Tietze, G. Brasche, K.
Gericke), Wiley-VCH, Weinheim, 2006.
was not formed. Most probably, the nitrogen atom of 2-
pyridine is able to sequester the Pd species by forming a five-
membered chelate after the carbopalladation step, thereby
II
[
6] a) G. Cuny, M. Bois-Choussy, J. Zhu, Angew. Chem. 2003, 115,
blocking the subsequent CÀH activation process. Neverthe-
4
922 – 4925; Angew. Chem. Int. Ed. 2003, 42, 4774 – 4777; b) G.
Cuny, M. Bois-Choussy, J. Zhu, J. Am. Chem. Soc. 2004, 126,
4475 – 14484; c) A. Pinto, X. Jia, L. Neuville, J. Zhu, Chem.
Eur. J. 2007, 13, 961 – 967.
less, 2-thiophene was a suitable partner to furnish the
oxindole 4n in 61% yield (Table 2, entry 13). Finally, a
symmetrically substituted oxindole, 4r, was synthesized in
1
5
7% yield by simply conducting the reaction with two
[7] Reviews on CÀH activation: a) A. D. Ryabov, Chem. Rev. 1990,
90, 403 – 424; b) G. Dyker, Angew. Chem. 1999, 111, 1808 – 1822;
Angew. Chem. Int. Ed. 1999, 38, 1698 – 1712; c) C. Jia, T.
Kitamura, Y. Fujiwara, Acc. Chem. Res. 2001, 34, 633 – 639;
d) M. Miura, M. Nomura, Top. Curr. Chem. 2002, 219, 211 – 241;
e) V. Ritleng, C. Sirlin, M. Pfeffer, Chem. Rev. 2002, 102, 1731 –
equivalents of 3-(trifluoromethyl)phenyl iodide (Scheme 3).
In summary, we have developed a flexible and stereocon-
trolled three-component synthesis of unsymmetrically sub-
stituted 3-(diarylmethylene)indolinones. The overall reaction
involves a sequence of Sonogashira reaction/carbopallada-
tion/CÀH activation, and CÀC bond formation and is
1
8
770; f) F. Kakiuchi, S. Murai, Acc. Chem. Res. 2002, 35, 826 –
34; g) C.-J. Li, Acc. Chem. Res. 2002, 35, 533 – 538; h) M.
catalyzed by a single Pd/Cu catalytic system. The ready
accessibility of the starting materials and the generality of this
process make it highly valuable in view of the synthetic and
medicinal importance of these heterocycles.
Catellani, Synlett 2003, 298 – 313; i) L.-C. Campeau, K. Fagnou,
Chem. Commun. 2006, 1253 – 1264; j) D. Alberico, M. E. Scott,
M. Lantens, Chem. Rev. 2007, 107, 174 – 238.
[
8] Indium-mediated cyclization/Pd-catalyzed cross-coupling: R.
Yanada, S. Obika, M. Oyama, Y. Takemoto, Org. Lett. 2004, 6,
2825 – 2828.
[
9] Pd-catalyzed Heck cyclization/Suzuki–Miyaura coupling:
Experimental Section
a) W. S. Cheung, R. J. Patch, M. R. Player, J. Org. Chem. 2005,
Typical procedure: Copper iodide (2.5 mol%), NaOAc (3 equiv), and
7
0, 3741 – 3744; b) R. Yanada, S. Obika, T. Inokuma, K. Yanada,
M. Yamashita, S. Ohta, Y. Takemoto, J. Org. Chem. 2005, 70,
972 – 6975.
[
Pd(Ph ) ] (5 mol%) were added to a degassed solution of anilide
3 4
(1.1 equiv) and aryl iodide (1.0 equiv) in DMF (c = 0.1m). The
6
mixture was heated at 608C for 1 h, and then the second aryl iodide
1.1 equiv) was introduced. After being stirred at 1108C for 28 h, the
[
10] Pd-catalyzed Heck cyclization/Sonogashira coupling: D. M.
(
DꢀSouza, F. Rominger, T. J. J. Mꢁller, Angew. Chem. 2005, 117,
reaction mixture was quenched with saturated aqueous NaCl solution
and extracted with EtOAc. The combined organic layers were washed
with brine and dried (Na SO ), and then concentrated. The residue
156 – 161; Angew. Chem. Int. Ed. 2005, 44, 153 – 158.
[
[
11] Rhodium-catalyzed carbopalladation/cross-coupling: R. Shin-
tani, T. Yamagami, T. Hayashi, Org. Lett. 2006, 8, 4799 – 4801.
12] S. Kamijo, Y. Sasaki, C. Kanazawa, T. Schꢁsseler, Y. Yamamoto,
Angew. Chem. 2005, 117, 7896 – 7899; Angew. Chem. Int. Ed.
005, 44, 7718 – 7721.
[13] a) M. E. M. Noble, J. A. Endicott, L. N. Johnson, Science 2004,
03, 1800 – 1805; b) A. Andreani, S. Burnelli, M. Granaiola, A.
2
4
was purified by flash chromatography to give the corresponding
oxindole.
(
3E)-5-methoxy-1-methyl-3-[(2-nitrophenyl)(phenyl)meth-
2
ylene]-1,3-dihydro-2H-indol-2-one (4a): 72 mg (77% yield); red
1
solid; m.p. 197–2008C; H NMR (300 MHz, CDCl ): d = 8.19 (dd,
3
3
J = 8.2, 1.1 Hz, 1H), 7.77 (dt, J = 7.5, 1.1 Hz, 1H), 7.65 (dt, J = 8.2,
Leoni, A. Locatelli, R. Morigi, M. Rambaldi, L. Varoli, M. W.
Kunkel, J. Med. Chem. 2006, 49, 6922 – 6924, and references
therein.
1
7
5
.5 Hz, 1H), 7.55 (dd, J = 7.5, 1.5 Hz, 1H), 7.44–7.39 (m, 2H), 7.36–
.31 (m, 3H), 6.73 (dd, J = 8.5, 2.4 Hz, 1H), 6.65 (d, J = 8.5 Hz, 1H),
1
3
.60 (d, J = 2.4 Hz, 1H), 3.48 (s, 3H), 3.17 ppm (s, 3H); C NMR
(
75 MHz, CDCl ): d = 166.0, 155.0, 149.4, 147.5, 137.6, 136.4, 136.2,
[14] a) K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett.
1975, 16, 4467 – 4770; b) E. Negishi, L. Anastasia, Chem. Rev.
2003, 103, 1979 – 2018.
3
1
1
4
34.3, 131.3, 130.2, 129.9, 129.5, 127.6, 125.6, 125.0, 123.4, 114.1, 110.0,
+
08.17, 55.5, 25.9 ppm; HRMS: calcd for C H N O Na [M+Na] :
2
3
18
2
4
09.1164; found: 409.1182.
[15] A. Pinto, L. Neuville, P. Retailleau, J. Zhu, Org. Lett. 2006, 8,
4927 – 4930.
[16] Intramolecular carbopalladation, C
ÀH activation, and CÀC
Received: December 22, 2006
Published online: March 22, 2007
bond-forming processes: a) S. M. Abdur Rahman, M. Sonoda,
K. Itahashi, Y. Tobe, Org. Lett. 2003, 5, 3411 – 3414; b) H. Ohno,
M. Yamamoto, M. Iuchi, T. Tanaka, Angew. Chem. 2005, 117,
Keywords: CÀH activation · domino reactions ·
.
5
233 – 5236; Angew. Chem. Int. Ed. 2005, 44, 5103 – 5106; c) L. F.
Tietze, F. Lotz, Eur. J. Org. Chem. 2006, 4676 – 4684.
17] Recent reviews: a) G. Poli, G. Giambastiani, A. Heumann,
Tetrahedron 2000, 56, 5959 – 5989; b) S.-I. Ikeda, Acc. Chem. Res.
multicomponent reactions · nitrogen heterocycles · palladium
[
2
2
1
000, 33, 511 – 519; c) I. Nakamura, Y. Yamamoto, Chem. Rev.
004, 104, 2127 – 2198; d) G. Zeni, R. Larock, Chem. Rev. 2004,
04, 2285 – 2310; e) J.-C. Wasilke, S. J. Obrey, R. T. Baker, G. C.
[
1] Multicomponent Reactions (Eds.: J. Zhu, H. BienaymØ), Wiley-
VCH, Weinheim, 2005.
2] a) B. M. Trost, Angew. Chem. 1995, 107, 285 – 307; Angew. Chem.
Int. Ed. Engl. 1995, 34, 259 – 281; b) P. A. Wender, S. T. Handy,
D. L. Wright, Chem. Ind. 1997, 765 – 769.
[
Bazan, Chem. Rev. 2005, 105, 1001 – 1020; f) S. Cacchi, G.
Fabrizi, Chem. Rev. 2005, 105, 2873 – 2920; g) G. Zeni, R. Larock,
Chem. Rev. 2006, 106, 4644 – 4680.
[
[
3] L. Banfi, R. Riva, Org. React. 2005, 65, 1 – 140.
4] a) A. Dömling, I. Ugi, Angew. Chem. 2000, 112, 3301 – 3344;
Angew. Chem. Int. Ed. 2000, 39, 3168 – 3210; b) J. Zhu, Eur. J.
Org. Chem. 2003, 1133 – 1144; c) A. Dömling, Chem. Rev. 2006,
[18] Tandem catalysis reviews: a) A. Ajamian, J. L. Gleason, Angew.
Chem. 2004, 116, 3842 – 3848; Angew. Chem. Int. Ed. 2004, 43,
3754; b) D. E. Fogg, E. N. Santos, Coord. Chem. Rev. 2004, 248,
2365 – 2379; c) J. M. Lee, Y. Na, H. Han, S. Chang, Chem. Soc.
Rev. 2004, 33, 302 – 312; d) J.-C. Wasilke, S. J. Obrey, R. T. Baker,
G. C. Bazan, Chem. Rev. 2005, 105, 1001 – 1020.
1
06, 17 – 89.
5] General reviews on domino process: a) L. F. Tietze, Chem. Rev.
996, 96, 115 – 136; b) K. C. Nicolaou, D. J. Edmonds, P. G.
[
1
3
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2007, 46, 3291 –3295