C O M M U N I C A T I O N S
functionality to Rh. Remarkably, in the solid state the oxidative
addition of N-C to Rh proceeds in a crystal-to-crystal fashion,
transforming only one of the two independent molecules in the
crystal.
Acknowledgment. We are grateful to Brandeis University for
support of this research. C.G. and B.M.F. are thankful to NSF (Grant
DMR-0089257) for partial support of this work. We thank Wei
Weng for the sample preparation for XRD studies.
Figure 1. ORTEP drawing (30% probability ellipsoids) of 4 (left, I of
D1) and 5a (right, II of D2) showing selected atom labeling. Omitted for
clarity: H atoms and Me groups except for Rh-Me.
Supporting Information Available: Experimental details, char-
acterization data, and CIF files. This material is available free of charge
heteroatom) in general. The kinetic importance of coordination of
aryl halide to Pd during amination reactions has been demonstrated
in some instances.15
References
(1) (a) Hartwig, J. F. Synlett 1997, 329. (b) Hartwig, J. F. Acc. Chem. Res.
1998, 31, 852. (c) Hartwig, J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
(d) Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2001, 219, 131. (e)
Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L. Acc. Chem.
Res. 1998, 31, 805.
(2) Yamashita, M.; Vicario, J. V. C.; Hartwig, J. F. J. Am. Chem. Soc. 2003,
125, 16347 and references within.
(3) Gray, S. D.; Weller, K. J.; Bruck, M. A.; Briggs, P. M.; Wigley, D. E. J.
Am. Chem. Soc. 1995, 117, 10678 and references within.
(4) (a) Utsunomiya, M.; Kuwano, R.; Kawatsura, M.; Hartwig, J. F. J. Am.
Chem. Soc. 2003, 125, 5608. (b) Hong, S.; Marks, T. J. J. Am. Chem.
Soc. 2002, 124, 7886. (c) Mu¨ller, T. E.; Beller, M. Chem. ReV. 1998, 98,
675 and references within.
(5) (a) Lin, B. L.; Clough, C. R.; Hillhouse, G. L. J. Am. Chem. Soc. 2002,
124, 2890. (b) Torrent, M.; Musaev, D. G.; Morokuma, K. Organome-
tallics 2000, 19, 4402. (c) Tayebani, M.; Gambarotta, S.; Yap, G.
Organometallics 1998, 17, 3639. (d) Bonanno, J. B.; Henry, T. P.;
Neithamer, D. R.; Wolczanski, P. T.; Lobkovsky, E. B. J. Am. Chem.
Soc. 1996, 118, 5132. (e) Chan, Y. W.; Renner, M. W.; Balch, A. L.
Organometallics 1983, 2, 1888. (f) CdN bond cleavages are more
common; see ref 5d for references. (g) Catalytic C-N cleavage in PCN
complexes of Rh (180 °C) has been reported, but no OA products were
characterized: Gandelman, M.; Milstein, D. Chem. Commun. 2000, 1603.
(6) Kanzelberger, M.; Zhang, X.; Emge, T. J.; Goldman, A. S.; Zhao, J.;
Incarvito, C.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 13644 and
references within. See also ref 9b.
(7) (a) Crumpton-Bregel, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2003,
125, 9442. (b) Crumpton, D. M.; Goldberg, K. I. J. Am. Chem. Soc. 2000,
122, 962. (c)
(8) Fan, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, 326.
(9) (a) Liang, L.-C.; Lin, J.-M.; Hung, C.-H. Organometallics 2003, 22, 3007-
3009. (b) Winter, A. M.; Eichele, K.; Mack, H.-G.; Potuznik, S.; Mayer,
H. A.; Kaska, W. C. J. Organomet. Chem. 2003, 682, 149
An equivalent description is that of an intramolecular attack by
a nucleophilic Rh on an electrophilic Me. This is in line with the
finding of Wolczanski et al. that the C-N oxidative addition of
arylamines to (tBu3SiO)3Ta was favored by the increased positive
charge on the R-C.5d Isomerization of 4 into 5a occurs even in the
solid state. Heating of a microcrystalline sample of 4 for 3 h at 70
°C resulted in >99% conversion to 5a, as confirmed by dissolution
and NMR analysis. The apparent rate of the solid-state reaction
relative to the solution rate is in accord with the trends for organic
solid-state reactions.16 Crystals of 4 suitable for an X-ray diffraction
study were grown from Et2O/pentane at -35 °C. Freshly grown
crystals from this and similarly prepared batches give solutions of
pure 4 when isolated and redissolved in C6D6 within <30 min.
The X-ray diffraction study (D1)17 revealed that the asymmetric
unit contained two independent molecules. One of these molecules
(I) is a molecule of 4, while the other crystallographic position
(II) is occupied by molecules of 4 or 5a (content of 4 in II is
53(2)%). The same crystal was subjected to another X-ray diffrac-
tion study (D2)17 16 days later. It registered a decay in intensity of
the signal, yet the data obtained was satisfactory for unambiguous
stereochemical determination. This second study (D2) revealed that
while I remained an unchanged 4, II now was >95% occupied by
molecules of 5a. Thus, it appears that for the transformation of 4
to 5a in the crystal, the actiVation energies for the two independent
molecules are different.18
(10) (a) Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J. J. Am. Chem. Soc. 1987,
109, 2803. (b) Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J. Organometallics
1986, 5, 2469. (d) Fryzuk, M. D.; MacNeil, P. A.; Rettig, S. J.
Organometallics 1985, 4, 1145.
The environment about Rh in 4 can be described as distorted
square planar or flattened tetrahedral. The P-Rh and Rh-Cl
distances are unremarkable. The N2-Rh2-Cl2 angle (171.6(3)°)
only slightly deviates from linearity, but the P3-Rh2-P4 angle is
merely 155.4(2)°. This showcases the inability of the ligand 2 to
maintain idealized meridionality and a tetrahedral amino N.
On the other hand, the anionic amido PNP form of the ligand in
5a possesses a planar N and is well suited to occupy three
meridional coordination sites. The crystallographic data confirm
that 5a is a RhIII square pyramidal compound with the Me group
in the apical site. The preference of the Me in 5 and of hydride in
3 for the apical position is ascribed to their high trans influence.19
The Rh-N distance in 5a (2.059(4) Å) is shorter than that in 4
(2.134(10) Å), as is expected for amido vs amine donor sites. The
Rh-CH3 distance (2.01(2) Å) in 5a is slightly shorter than the
2.06-2.08 Å Rh-CH3 distances calculated for various B.11d
In summary, we present here an investigation of a well-defined
oxidative addition of a C(sp3)-N bond to a transition metal center.
In addition, related N-H oxidative addition reactions are reported.
These N-H and N-C bonds are slightly weaker than those in
aliphatic and monoaromatic amines.20 That and the product-adapted
geometry of the PNP ligand contribute to the overall ease and
favorability of N-C (and N-H) OA. Solution kinetic studies
suggest a simple migration of Me from a coordinated amine
(11) (a) Moulton, C. J.; Shaw, B. L. J. Chem. Soc., Dalton Trans. 1976, 1020.
(b) Rybtchinski, B.; Vigalok, A.; Ben-David, Y.; Milstein, D. J. Am. Chem.
Soc. 1996, 118, 12406. (c) Liou, S.-Y.; Gozin, M.; Milstein, D. J. Am.
Chem. Soc. 1995, 117, 9774. (d) Sundermann, A.; Uzan, O.; Milstein,
D.; Martin, J. M. L. J. Am. Chem. Soc. 2000, 122, 7095. (e) van der Boom,
M. E.; Milstein, D. Chem. ReV. 2003, 103, 1759. (f) van der Boom, M.
E.; Liou, S.-Y.; Ben-David, Y.; Vigalok, A.; Milstein, D. Angew. Chem.,
Int. Ed. Engl. 1997, 36, 625. (g) van der Boom, M. E.; Liou, S.-Y.; Ben-
David, Y.; Shimon, L. J. W.; Milstein, D. J. Am. Chem. Soc. 1998, 120,
6531.
(12) Esteruelas, M. A.; Werner, H. J. Organomet. Chem. 1986, 303, 221.
(13) (a) Werner, H.; Wolf, J.; Ho¨hn, A. J. Organomet. Chem. 1985, 287, 395.
(b) Intille, G. M. Inorg. Chem. 1972, 11, 695. (c) James, B. R.; Preece,
M.; Robinson, S. D. Inorg. Chim. Acta 1979, 34, L219. (d) Masters, C.;
Shaw, B. L. J. Chem. Soc. A 1971, 3679.
(14) Crabtree, R. H. The Organometallic Chemistry of the Transition Metals,
3rd ed.; Wiley-Interscience: New York, 2001; p 226.
(15) Alcazar-Roman, L. M.; Hartwig, J. F. Organometallics 2002, 21, 491.
(16) Paul, I. C.; Curtin, D. Y. Acc. Chem. Res. 1973, 6, 217.
(17) Data collection took ca. 4 days at 22 °C.
(18) Ohashi, Y. Acc. Chem. Res. 1988, 21, 268.
(19) For discussion of the preferred geometries of five-coordinate d6 complexes,
see: (a) Lam, W. H.; Shimada, S.; Batsanov, A. S.; Lin, Z.; Marder, T.
B.; Cowan, J. A.; Howard, J. A. K.; Mason, S. A.; McIntyre, G. J.
Organometallics 2003, 22, 4557. (b) Rachidi, I. E.-I.; Eisenstein, O.; Jean,
Y. New J. Chem. 1990, 14, 671. (c) Riehl, J.-F.; Jean, Y.; Eisenstein, O.;
Pelissier, M. Organometallics 1992, 11, 729. (d) Olivan, M.; Eisenstein,
O.; Caulton, K. G. Organometallics 1997, 16, 2227.
(20) (a) Lucarini, M.; Pedrielli, P.; Pedulli, G. F.; Valgimigli, L.; Gigmes, D.;
Tordo, P. J. Am. Chem. Soc. 1999, 121, 11546. (b) MacFaul, P. A.;
Wayner, D. D. M.; Ingold, K. U. J. Org. Chem. 1997, 62, 3413. (c)
Budyka, M. F. J. Mol. Structure 2003, 629, 127.
JA049659L
9
J. AM. CHEM. SOC. VOL. 126, NO. 15, 2004 4793