Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
bonds in one operation without isolating the intermediates and
adding further reagents and has exhibited high efficiency in the
synthesis of complex organic building blocks from easily
available starting materials.6 Herein, we report a new cascade
reaction of benzyne with aromatic aldehydes and anilines, which
furnishes a rapid and versatile synthesis of 6-aryl-phenan-
thridines.
Cascade Approach to Substituted
6-Aryl-phenanthridines from Aromatic
Aldehydes, Anilines, and
Benzenediazonium-2-carboxylate
Wang-Ge Shou, Yun-Yun Yang, and Yan-Guang Wang*
Department of Chemistry, Zhejiang UniVersity, Hangzhou
Benzynes are highly reactive intermediates that have found
numerous applications in organic synthesis.7 The dienophilic
nature of the benzynes has been exploited in [2 + 2] and [4 +
2] cycloaddition reactions with enes and dienes.8 It is reported
that the reaction between benzyne and imines, such as N-
benzylideneanilines, gave 1,2-diarylbenzazetidenes,9 N-(o-anili-
nobenzhydryl)-aniline, and 5,6-dihydro-5,6-diphenylphenan-
thridines10 as well as acridines11 via [2 + 2] and/or [4 + 2]
cycloaddition reactions. In our initial experiment, we found that
the in situ generated benzyne from benzenediazonium-2-
310027, People’s Republic of China
ReceiVed August 8, 2006
(4) (a) Patra, P. K.; Suresh, J. R.; Ila, H.; Junjappa, H. Tetrahedron 1998,
54, 10167-10178. (b) Gug, F.; Bach, S.; Blondel, M.; Vierfond, J.-M.;
Martin, A.-S.; Galons, H. Tetrahedron 2004, 60, 4705-4708. (c) Pawlas,
J.; Begtrup, M. Org. Lett. 2002, 4, 2687-2690. (d) Banwell, M. G.; Lupton,
D. W.; Ma, X. H.; Renner, J.; Sydnes, M. O. Org. Lett. 2004, 6, 2741-
2744. (e) Mehta, B. K.; Yanagisawa, K.; Shiro, M.; Kotsuki, H. Org. Lett.
2003, 5, 1605-1608. (f) Li, D.; Zhao, B.; LaVoie, E. J. J. Org. Chem.
2000, 65, 2802-2805. (g) Hilt, G.; Hess, W.; Schmidt, F. Eur. J. Org.
Chem. 2005, 2526-2533. (h) Liepa, A. J.; Nearn, R. N.; Wright, D. M. J.
Aust. J. Chem. 2004, 57, 473-482. (i) Lyse´n, M.; Kristensen, J. L.; Vedsø,
P.; Begtrup, M. Org. Lett. 2002, 4, 257-259.
Aromatic aldehydes reacted with anilines and benzenedia-
zonium-2-carboxylate to afford 6-aryl-phenanthridines. The
reaction furnishes a rapid and direct construction of substi-
tuted phenanthridine rings from readily available starting
materials via a one-pot cascade process.
(5) (a) Wang, Y. G.; Cui, S. L.; Lin, X. F. Org. Lett. 2006, 8, 1241-
1244. (b) Cui, S. L.; Lin, X. F.; Wang, Y. G. J. Org. Chem. 2005, 70,
2866-2869. (c) Lin, X. F.; Cui, S. L.; Wang, Y. G. Tetrahedron Lett. 2006,
47, 3127-3130. (d) Lin, X. F.; Cui, S. L.; Wang, Y. G. Tetrahedron Lett.
2006, 47, 4509-4512.
(6) For a leading reference on cascade processes, see: (a) Lee, P. H.;
Lee, K. Angew. Chem., Int. Ed. 2005, 44, 3253-3256. (b) Ohno, H.;
Yamamoto, M.; Iuchi, M.; Tanaka, T. Angew. Chem., Int. Ed. 2005, 44,
5103-5106; (c) Ueda, M.; Miyabe, H.; Sugino, H.; Miyata, O.; Naito, T.
Angew. Chem., Int. Ed. 2005, 44, 6190-6193. (d) Kusama, H.; Yamabe,
H.; Onizawa, Y.; Hoshino, T.; Iwasawa, N. Angew. Chem., Int. Ed. 2005,
44, 468-470. (e) D’Souza, D. M.; Rominger, F.; Mu¨ller, T. J. J. Angew.
Chem., Int. Ed. 2005, 44, 153-158. (f) Jacobi von Wangelin, A.; Neumann,
H.; Go¨rdes, D.; Klaus, S.; Stru¨bing, D.; Beller, M. Chem.sEur. J. 2003, 9,
4286-4294. (g) Ramo´n, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44,
1602-1634.
(7) (a) Beihl, E. R.; Khanapure, S. P. Acc. Chem. Res. 1989, 22, 275-
281. (b) Sander, W. Acc. Chem. Res. 1999, 32, 669-676. (c) Pelissier, H.;
Santelli, M. Tetrahedron 2003, 59, 701-730. (d) Tambar, U. K.; Stoltz, B.
M. J. Am. Chem. Soc. 2005, 127, 5340-5341. (e) Liu, Z.; Larock, R. C. J.
Am. Chem Soc. 2005, 127, 13112-13113. (f) Zhao, J.; Larock, R. C. Org.
Lett. 2005, 7, 4273-4275. (g) Henderson, J. L.; Edwards, A. S.; Greaney,
M. F. J. Am. Chem Soc. 2006, 128, 7426-7427. (h) Tomori, H.; Fox, J.
M.; Buchwald, S. L. J. Org. Chem. 2000, 65, 5334-5341. (i) Yoshikawa,
E.; Radhakrishnan, K. V.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122,
7280-7286. (j) Beller, M.; Breindl, C.; Riermeier, T. H.; Tillack, A. J.
Org. Chem. 2001, 66, 1403-1412. (k) Chatani, N.; Kamitani, A.; Oshita,
M.; Fukumoto, Y.; Murai, S. J. Am. Chem. Soc. 2001, 123, 12686-12687.
(l) Rao, U. N.; Beihl, E. J. Org. Chem. 2002, 67, 3409-3411. (m) Liu, Z.;
Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 15716-15717. (n)
Dockendorff, C.; Sahli, S.; Olsen, M.; Milhau, L.; Lautens, M. J. Am. Chem.
Soc. 2005, 127, 15028-15029. (o) Yoshida, H.; Wantanable, M.; Fuku-
shima, H.; Ohshita, J.; Kunai, A. Org. Lett. 2004, 6, 4049-4051.
(8) Rayabarapu, D.; Majumdar, K. K.; Sambaiah, T.; Cheng, C. H. J.
Org. Chem. 2001, 66, 3646-3649.
Substituted phenanthridines are an important class of hetero-
cyclic compounds in material science1 and in medicinal
chemistry due to their significant biological activities.2 The
Bischler-Napieralski cyclization has been used extensively to
synthesize phenanthridine derivatives.3 It is usually performed
in the presence of P4O10, POCl3, or PCl5 at elevated tempera-
tures, thereby limiting the kind of functional groups that can
be tolerated. Although several other synthetic routes to substi-
tuted phenanthridines have been developed, most of them require
multi-step syntheses, strictly anhydrous conditions, and/or metal
catalysts.4 Thus, there is a need for more efficient, versatile,
and simpler synthetic methods of creating phenanthridines. As
one promising approach, we were particularly interested in
cascade reactions5 since this methodology can form several
* Corresponding author. Tel: +86-571-87951512. Fax: +86-571-87951512.
(1) (a) Zhang, J.; Lakowicz, J. R. J. Phys. Chem. B 2005, 109, 8701-
8707. (b) Amendola, V.; Fabbrizzi, L.; Gianelli, L.; Maggi, C.; Mangano,
C.; Pallavicini, P.; Zema, M. Inorg. Chem. 2001, 40, 3579-3587. (c)
Bondarev, S. L.; Knyukshto, V. N.; Tikhomirov, S. A.; Pyrko, A. N. Opt.
Spectrosc. 2006, 100, 386-393.
(2) (a) Atwell, G. J.; Baguley, B. C.; Denny, W. A. J. Med. Chem. 1988,
31, 774-779. (b) Cappelli, A.; Anzini, M.; Vomero, S.; Mannuni, L.;
Makovec, F.; Doucet, E.; Hamon, M.; Bruni, G.; Romeo, M. R.; Menziani,
M. C.; Benedetti, P. G.; Langer, T. J. Med. Chem. 1998, 41, 728-741. (c)
Janin, Y. L.; Croisy, A.; Riou, J.-F.; Bisagni, E. J. Med. Chem. 1993, 36,
3686-3692. (d) Lynch, M. A.; Duval, O.; Sukhanova, A.; Devy, J.;
MacKay, S. P.; Waigh, R. D.; Nabiev, I. Bioorg. Med. Chem. Lett. 2001,
11, 2643-2646. (e) Ishikawa, T. Med. Res. ReV. 2001, 21, 61-72. (f) Bach,
S.; Talarek, N.; Andrieu, T.; Vierfond, J.-M.; Mettey, Y.; Galons, H.;
Dormont, D.; Meijer, L.; Cullin, C.; Blondel, M. Nat. Biotechnol. 2003,
1075-1081. (g) Korth, C.; May, B. C.; Cohen, F. E.; Prusiner, S. B. Proc.
Natl. Acad. Sci. U.S.A. 2001, 98, 9836-9841.
(9) Singal, K. K.; Kaur, J. Synth. Commun. 2001, 31, 2809-2815.
(10) Nakayama, J.; Midorikawa, H.; Yoshida, M. Bull. Chem. Soc. Jpn.
1975, 48, 1063-1064.
(11) (a) Aly, A. A.; Mohamed, N. K.; Hassan, A. A.; Mourad, A.-F. E.
Tetrahedron 1999, 55, 1111-1118. (b) Fishwick, C. W. G.; Gupta, R. C.;
Storr, R. C. J. Chem. Soc., Perkin Trans. 1 1984, 2827-2829.
(3) (a) Mamalis, P.; Petrow, V. J. Chem. Soc. 1950, 703-711. (b) Buu-
Ho¨ı, N. P.; Jaquignon, P.; Long, C. T. J. Chem. Soc. 1957, 505-509.
10.1021/jo061648i CCC: $33.50 © 2006 American Chemical Society
Published on Web 10/21/2006
J. Org. Chem. 2006, 71, 9241-9243
9241