Welcome to LookChem.com Sign In|Join Free
  • or

Encyclopedia

6-Methyl-2-(pyridin-4-yl)pyrimidin-4-amine

Base Information Edit
  • Chemical Name:6-Methyl-2-(pyridin-4-yl)pyrimidin-4-amine
  • CAS No.:61310-35-8
  • Molecular Formula:C10H10N4
  • Molecular Weight:186.216
  • Hs Code.:
  • ChEMBL ID:CHEMBL441108
  • DSSTox Substance ID:DTXSID60509302
  • Nikkaji Number:J1.663.258I
  • Wikidata:Q82366761
  • Mol file:61310-35-8.mol
6-Methyl-2-(pyridin-4-yl)pyrimidin-4-amine

Synonyms:61310-35-8;6-Methyl-2-(pyridin-4-yl)pyrimidin-4-amine;CHEMBL441108;SCHEMBL10942195;DTXSID60509302;AKOS011473214

Suppliers and Price of 6-Methyl-2-(pyridin-4-yl)pyrimidin-4-amine
Supply Marketing:Edit
Business phase:
The product has achieved commercial mass production*data from LookChem market partment
Manufacturers and distributors:
  • Manufacture/Brand
  • Chemicals and raw materials
  • Packaging
  • price
  • Abosyn
  • 6-methyl-2-(pyridin-4-yl)pyrimidin-4-amine 95%-98%
  • 1g
  • $ 520.00
Total 1 raw suppliers
Chemical Property of 6-Methyl-2-(pyridin-4-yl)pyrimidin-4-amine Edit
Chemical Property:
  • Melting Point:192-194 °C(Solv: isopropanol (67-63-0)) 
  • Boiling Point:288.4±32.0 °C(Predicted) 
  • PSA:65.42000 
  • Density:1.217±0.06 g/cm3(Predicted) 
  • LogP:1.35930 
  • XLogP3:0.6
  • Hydrogen Bond Donor Count:1
  • Hydrogen Bond Acceptor Count:4
  • Rotatable Bond Count:1
  • Exact Mass:186.090546336
  • Heavy Atom Count:14
  • Complexity:179
Purity/Quality:

99% *data from raw suppliers

6-methyl-2-(pyridin-4-yl)pyrimidin-4-amine 95%-98% *data from reagent suppliers

Safty Information:
  • Pictogram(s):  
  • Hazard Codes: 
MSDS Files:

SDS file from LookChem

Useful:
  • Canonical SMILES:CC1=CC(=NC(=N1)C2=CC=NC=C2)N
Technology Process of 6-Methyl-2-(pyridin-4-yl)pyrimidin-4-amine

There total 6 articles about 6-Methyl-2-(pyridin-4-yl)pyrimidin-4-amine which guide to synthetic route it. The literature collected by LookChem mainly comes from the sharing of users and the free literature resources found by Internet computing technology. We keep the original model of the professional version of literature to make it easier and faster for users to retrieve and use. At the same time, we analyze and calculate the most feasible synthesis route with the highest yield for your reference as below:

synthetic route:
Guidance literature:
With lithium diisopropyl amide; In tetrahydrofuran; for 5h; Heating;
DOI:10.3987/com-01-9303
Guidance literature:
With hydrogen; nickel; In ethanol; at 60 - 65 ℃;
DOI:10.1021/jm00349a014
Guidance literature:
Multi-step reaction with 4 steps
1: 28.2 g / CH3ONa / methanol / 24 h / Heating
2: 100 percent / PhPOCl2 / 6 h / 150 - 170 °C
3: 31.2 g / NH2NH2*H2O / ethanol / 2 h / Heating
4: 22.6 g / H2 / Raney Ni / ethanol / 60 - 65 °C
With P,P-dichlorophenylphosphine oxide; hydrogen; sodium methylate; hydrazine hydrate; nickel; In methanol; ethanol;
DOI:10.1021/jm00349a014
Post RFQ for Price