10.1016/0040-4020(82)80160-9
The research focused on determining the activation energy for the ring-closure reaction of ground state triplet trimethylenemethane (I) to methylenecyclopropane. The purpose was to measure this energy by monitoring the rate of disappearance of the electron spin resonance spectrum over a specific temperature range in frozen solid matrices, using 3-methylenecyclobutanone and methylenecyclopropane as precursors to trimethylenemethane. The study concluded that the activation energy for the ring-closure was significantly lower than the theoretical estimates, with a value of 7 kcal/mole, contrasting with the approximate 20 kcal/mole barrier suggested by theoretical models. The chemicals used in the process included 3-methylenecyclobutanone, methylenecyclopropane, isobutylene, and various solvents such as methylcyclohexane, perfluoromethylcyclohexane, decalin, and tetrahydrofuran for the matrix solutions. The research also involved the synthesis and use of fully deuterated methylenecyclopropane-da to investigate the possibility of a tunneling mechanism in the ring-closure reaction.