10.1016/S0960-894X(02)01003-X
The study focuses on the structure-activity relationships of novel anti-malarial agents, specifically N-(4-acylamino-3-benzoylphenyl)-[5-(4-nitrophenyl)-2furyl]acrylic acid amides. The researchers developed a lead compound, benzophenone 4g, which was modified by replacing the tolylacetyl residue at the 2-amino group with various acyl residues to determine their influence on anti-malarial activity. The chemicals used included 2-amino-5-nitrobenzophenone, acid chlorides for acylation, SnCl2?2H2O for reduction, and 3-[5-(4-nitrophenyl)-2-furyl]acrylic acid chloride for further acylation. The purpose of these chemicals was to synthesize and test a series of compounds to identify the optimal acyl residue structure for high anti-malarial activity, with the aim of overcoming drug resistance in Plasmodium falciparum, the causative agent of malaria. The study found that a phenylacetic acid substructure substituted in its para-position with methyl or similar-sized substituents was essential for high activity, with the trifluoromethyl-substituted derivative showing the most potent activity.