Technology Process of C29H34FNO3Si
There total 4 articles about C29H34FNO3Si which
guide to synthetic route it.
The literature collected by LookChem mainly comes from the sharing of users and the free literature resources found by Internet computing technology. We keep the original model of the professional version of literature to make it easier and faster for users to retrieve and use. At the same time, we analyze and calculate the most feasible synthesis route with the highest yield for your reference as below:
synthetic route:
- Guidance literature:
-
Multi-step reaction with 2 steps
1.1: hydrogenchloride; water / dichloromethane / 0 - 30 °C / pH 2 - 2.5
2.1: potassium iodide / N,N-dimethyl-formamide / 0.75 h / 25 - 65 °C / Inert atmosphere
2.2: 0.5 h / 60 - 65 °C
2.3: 0.5 h / 60 - 65 °C
With
hydrogenchloride; water; potassium iodide;
In
dichloromethane; N,N-dimethyl-formamide;
- Guidance literature:
-
Multi-step reaction with 3 steps
1.1: sodium hydroxide; water / tetrahydrofuran / 24 h / 20 - 30 °C
1.2: pH 1.5 - 2
1.3: 20 °C
2.1: hydrogenchloride; water / dichloromethane / 0 - 30 °C / pH 2 - 2.5
3.1: potassium iodide / N,N-dimethyl-formamide / 0.75 h / 25 - 65 °C / Inert atmosphere
3.2: 0.5 h / 60 - 65 °C
3.3: 0.5 h / 60 - 65 °C
With
hydrogenchloride; water; potassium iodide; sodium hydroxide;
In
tetrahydrofuran; dichloromethane; N,N-dimethyl-formamide;
- Guidance literature:
-
Multi-step reaction with 4 steps
1.1: lithium hexamethyldisilazane / hexane; tetrahydrofuran / 1 h / -35 - -15 °C
1.2: 1 h / -80 - -75 °C
2.1: sodium hydroxide; water / tetrahydrofuran / 24 h / 20 - 30 °C
2.2: pH 1.5 - 2
2.3: 20 °C
3.1: hydrogenchloride; water / dichloromethane / 0 - 30 °C / pH 2 - 2.5
4.1: potassium iodide / N,N-dimethyl-formamide / 0.75 h / 25 - 65 °C / Inert atmosphere
4.2: 0.5 h / 60 - 65 °C
4.3: 0.5 h / 60 - 65 °C
With
hydrogenchloride; water; potassium iodide; sodium hydroxide; lithium hexamethyldisilazane;
In
tetrahydrofuran; hexane; dichloromethane; N,N-dimethyl-formamide;