Welcome to LookChem.com Sign In|Join Free

CAS

  • or

12136-50-4

Post Buying Request

12136-50-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

12136-50-4 Usage

General Description

Potassium pentasulfide is a chemical compound with the formula K2S5, consisting of potassium cations and pentasulfide anions. It is a yellow crystalline solid with a pungent odor and is highly reactive. It is primarily used as a reagent in chemical synthesis, particularly in the production of organic sulfur compounds. Potassium pentasulfide is also used in the petroleum industry as a desulfurization agent and in the manufacture of pesticides and pharmaceuticals. It is highly toxic if ingested or inhaled, and precautions should be taken to avoid contact with skin and eyes.

Check Digit Verification of cas no

The CAS Registry Mumber 12136-50-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,2,1,3 and 6 respectively; the second part has 2 digits, 5 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 12136-50:
(7*1)+(6*2)+(5*1)+(4*3)+(3*6)+(2*5)+(1*0)=64
64 % 10 = 4
So 12136-50-4 is a valid CAS Registry Number.
InChI:InChI=1/10K.5S/q10*+1;5*-2

12136-50-4Relevant articles and documents

Ion-exchangeable cobalt polysulfide chalcogel

Shafaei-Fallah, Maryam,He, Jiaqing,Rothenberger, Alexander,Kanatzidis, Mercouri G.

, p. 1200 - 1202 (2011)

We present a promising approach in synthetic chalcogel chemistry that is extendable to a broad variety of inorganic spacers. Polychalcogenide aerogels with ion-exchange properties are demonstrated in cobalt polysulfide. The new materials show a broad range of pore sizes and high surface area of 483 m 2/g.

Kelly, Barbara,Woodward, Peter

, (1976)

Understanding fluxes as media for directed synthesis: In situ local structure of molten potassium polysulfides

Shoemaker, Daniel P.,Chung, Duck Young,Mitchell,Bray, Travis H.,Soderholm,Chupas, Peter J.,Kanatzidis, Mercouri G.

, p. 9456 - 9463 (2012/07/14)

Rational exploratory synthesis of new materials requires routes to discover novel phases and systematic methods to tailor their structures and properties. Synthetic reactions in molten fluxes have proven to be an excellent route to new inorganic materials because they promote diffusion and can serve as an additional reactant, but little is known about the mechanisms of compound formation, crystal precipitation, or behavior of fluxes themselves at conditions relevant to synthesis. In this study we examine the properties of a salt flux system that has proven extremely fertile for growth of new materials: the potassium polysulfides spanning K2S3 and K 2S5, which melt between 302 and 206 °C. We present in situ Raman spectroscopy of melts between K2S3 and K 2S5 and find strong coupling between n in K 2Sn and the molten local structure, implying that the Sn2- chains in the crystalline state are mirrored in the melt. In any reactive flux system, K2Sn included, a signature of changing species in the melt implies that their evolution during a reaction can be characterized and eventually controlled for selective formation of compounds. We use in situ X-ray total scattering to obtain the pair distribution function of molten K2S5 and model the length of Sn2- chains in the melt using reverse Monte Carlo simulations. Combining in situ Raman and total scattering provides a path to understanding the behavior of reactive media and should be broadly applied for more informed, targeted synthesis of compounds in a wide variety of inorganic fluxes.

Syntheses and characterization of the new homoleptic indium-polysulfide complexes [In2S27]4-, [In2S14]2-, and [In2S16]2-

Dhingra, Sandeep S.,Kanatzidis, Mercouri G.

, p. 3300 - 3305 (2008/10/08)

The reaction of InCl3 with K2S5 and Ph4PCl in a 2:5:4 mole ratio in DMF afforded thin pale yellow crystals of (Ph4P)4[In2S27] (I). I crystallizes in the triclinic space group P1 (No. 2) with a = 12.276(3) ?, b = 21.849(8) ?, c = 10.852(2) ?, α = 99.57(2)°, β = 112.44(2)°, γ = 79.28(3)°, V = 2628(1) ?3 (at -90°C), and Z = 1. The [In2(S4)2(S6)2(S 7)]4- anion consists of In3+ centers in trigonal bipyramidal coordination. Each In atom is chelated by two bidentate polysulfide S42- and S62- ligands forming a [In(S4)(S6)]- unit. Two [In(S4)(S6)]- units are bridged by an S72- chain forming a dimer. A similar reaction of InCl3 with K2S5 and Ph4PCl in a slightly different mole ratio of 1:2:1 in DMF afforded pale yellow crystals of (Ph4P)2{[In2S14] 0.5[In2S16]0.5} (II). II crystallizes in the triclinic space group P1 (No. 2) with a = 10.906(2) ?, b = 11.892(2) ?, c = 21.554(3) ?, α = 89.81(1)°, β = 97.46(1)°, γ = 92.25(1)°, V = 2769(1) ?3 (at -80°C), and Z = 2. II is a cocrystallizate of [In2S14]2- and [In2Si6]2- anions with equal occupancies. The two anions contain tetrahedral In3+ centers. The In atoms are bridged by an S2- and an S52- ligand to form an eight-membered [In2S(S5)]2+ ring core in an extreme cradle configuration. The remaining two coordination sites on each In atom are occupied by a S42- chelating ligand on one side and a S42- or a S62- chelating ligand disordered on the other. These complexes show no absorption peaks in the UV/vis region of the spectrum. The solid-state far-IR spectra of the compounds exhibit strong absorptions in the 500-100-cm-1 region due to the S-S and M-S stretching vibrations. Thermal gravimetric analysis data for these compounds are reported.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 12136-50-4