Welcome to LookChem.com Sign In|Join Free

CAS

  • or

14406-66-7

Post Buying Request

14406-66-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

14406-66-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 14406-66-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,4,4,0 and 6 respectively; the second part has 2 digits, 6 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 14406-66:
(7*1)+(6*4)+(5*4)+(4*0)+(3*6)+(2*6)+(1*6)=87
87 % 10 = 7
So 14406-66-7 is a valid CAS Registry Number.

14406-66-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name nickel(2+),1-nitrosonaphthalen-2-olate

1.2 Other means of identification

Product number -
Other names EINECS 238-380-7

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:14406-66-7 SDS

14406-66-7Downstream Products

14406-66-7Relevant articles and documents

Triazole-estradiol analogs: A potential cancer therapeutic targeting ovarian and colorectal cancer

Alotaibi, Faez,Halaweish, Fathi,Halaweish, Hossam,Iram, Surtaj,Kasten, Abigail,Kyeremateng, Jennifer,Ostlund, Trevor

, (2021/12/27)

1,2,3-triazoles have continuously shown effectiveness as biologically active systems towards various cancers, and when used in combination with steroid skeletons as a carrier, which can act as a drug delivery system, allows for a creation of a novel set of analogs that may be useful as a pharmacophore leading to a potential treatment option for cancer. A common molecular target for cancer inhibition is that of the Epidermal Growth Factor Receptor/Mitogen Activated Protein Kinase pathways, as inhibition of these proteins is associated with a decrease in cell viability. Estradiol-Triazole analogs were thus designed using a molecular modeling approach. Thirteen of the high scoring analogs were then synthesized and tested in-vitro on an ovarian cancer cell line (A2780) and colorectal cancer cell line (HT-29). The most active compound, Fz25, shows low micromolar activity in both the ovarian (15.29 ± 2.19 μM) and colorectal lines (15.98 ± 0.39 μM). Mechanism of action studies proved that Fz25 moderately arrests cells in the G1 phase of the cell cycle, specifically inhibiting STAT3 in both cell lines. Additionally, Fz57 shows activity in the colorectal line (24.19 ± 1.37 μM). Inhibition studies in both cell lines show inhibition against various proteins in the EGFR pathway, namely EGFR, STAT3, ERK, and mTOR. To further study their effects as therapeutics, Fz25 and Fz57 were studied against drug efflux proteins, which are associated with drug resistance, and were found to inhibit the ABC transporter P-glycoprotein. We can conclude that these estradiol-triazole analogs provide a key for future studies targeting protein inhibition and drug resistance in cancer.

Microwave-assisted synthesis, structural characterization and assessment of the antibacterial activity of some new aminopyridine, pyrrolidine, piperidine and morpholine acetamides

Abdulghani, Saba S.,Alsamarrai, Abdulmajeed S. H.

, (2021/06/14)

A series of new acetamide derivatives 22–28 of primary and secondary amines and para-toluene sulphinate sodium salt have been synthesized under microwave irradiation and assessed in vitro for their antibacterial activity against one Gram-positive and two Gram-negative bacterial species such as S. pyogenes, E. coli, and P. mirabilis using the Mueller-Hinton Agar diffusion (well diffusion) method. The synthesized compounds with significant differences in inhibition diameters and MICs were compared with those of amoxicillin, ampicillin, cephalothin, azithromycin and doxycycline. All of the evaluated acetamide derivatives were used with varying inhibition concentrations of 6.25, 12.5, 37.5, 62.5, 87.5, 112.5 and 125 μg/mL. The results show that the most important antibacterial properties were displayed by the synthetic compounds 22 and 24, both of bear a para-chlorophenyl moiety incorporated into the 2-position moiety of acetamide 1. The molecular structures of the new compounds were determined using the FT-IR and1H-NMR techniques.

Naproxen based 1,3,4-oxadiazole derivatives as EGFR inhibitors: Design, synthesis, anticancer, and computational studies

Alam, Mohammad Mahboob,Alfaifi, Mohammad Y.,Alfaifi, Sulaiman Y. M.,Almalki, Abdulraheem S. A.,Alsenani, Nawaf I.,Alsharif, Meshari A.,Elbehairi, Serag Eldin I.,Elhenawy, Ahmed A.,Malebari, Azizah M.,Nazreen, Syed

, (2021/10/05)

A library of novel naproxen based 1,3,4-oxadiazole derivatives (8–16 and 19–26) has been synthesized and screened for cytotoxicity as EGFR inhibitors. Among the synthesized hy-brids, compound2-(4-((5-((S)-1-(2-methoxynaphthalen-6-yl)ethyl)-1,3,4-oxadiazol-2-ylthio)methyl)-1H-1,2,3-triazol-1-yl)phenol(15) was the most potent compound against MCF-7 and HepG2cancer cells with IC50 of 2.13 and 1.63 μg/mL, respectively, and was equipotent to doxorubicin (IC50 1.62 μg/mL) towards HepG2. Furthermore, compound 15 inhibited EGFR kinase with IC50 0.41 μM compared to standard drug Erlotinib (IC50 0.30 μM). The active compound induces a high percentage of necrosis towards MCF-7, HePG2 and HCT 116 cells. The docking studies, DFT and MEP also supported the biological data. These results demonstrated that these synthesized naproxen hybrids have EGFR inhibition effects and can be used as leads for cancer therapy.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 14406-66-7