Welcome to LookChem.com Sign In|Join Free

CAS

  • or

151-51-9

Post Buying Request

151-51-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

151-51-9 Usage

Definition

ChEBI: A carbodiimide in which both nitrogens are unsubstituted.

Check Digit Verification of cas no

The CAS Registry Mumber 151-51-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 1,5 and 1 respectively; the second part has 2 digits, 5 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 151-51:
(5*1)+(4*5)+(3*1)+(2*5)+(1*1)=39
39 % 10 = 9
So 151-51-9 is a valid CAS Registry Number.
InChI:InChI=1/CH2N2/c2-1-3/h2-3H

151-51-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name methanediimine

1.2 Other means of identification

Product number -
Other names Stabilisator 9000

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:151-51-9 SDS

151-51-9Relevant articles and documents

Investigation of the redox interaction between iron(III) 5,10,15,20-tetrakis(p-sulfonatophenyl)porphyrinate and aminoiminomethanesulfinic acid in aqueous solution

Lepentsiotis, Vasilios,Van Eldik, Rudi,Stulov, Dimitri M.,Makarov, Sergei V.

, p. 2915 - 2920 (1998)

Stability studies have been made on aminoiminomethanesulfinic acid [aimsa, thiourea dioxide, (NH2)2CSO2] and the reactions of aimsa and its decomposition product (dithionite, S2O42-) with iron(III) 5,10,15,20-tetrakis-(p-sulfonatophenyl)porphyrinate [FeIII(tpps)] in the presence of oxygen have been investigated. Application of NMR and stopped-flow spectrophotometry revealed direct evidence for the existence of two different forms of aimsa in aqueous solution. The slow formation of one of these forms, NH2NHCSO2H, is shown to determine the strong dependence of the reactivity of aimsa on the age of the stock solutions. Both aimsa and dithionite react in a similar way with FeIII(tpps) in alkaline solutions. The SO2?- radical plays a key role in the redox reactions. The ratio of the oxygen and radical concentration determines which kind of reaction (oxidation, reduction or decomposition) will dominate. In general a high oxygen concentration and a low radical concentration favour the oxidation and decomposition of the metalloporphyrin, whereas a high radical concentration and a low oxygen concentration favour the reduction. In strongly basic solutions ([NaOH] = 0.5 M) a redox cycle between FeIII(tpps) and FeII(tpps) is observed at low aimsa and dithionite concentration. Possible mechanisms for the decomposition of aimsa in alkaline solutions, as well as for the reactions between FeIII(tpps) and aimsa or dithionite, are proposed.

Photochemistry of 1- and 2-Methyl-5-aminotetrazoles: Structural Effects on Reaction Pathways

Ismael,Fausto,Cristiano

, p. 11656 - 11663 (2016/12/09)

The influence of the position of the methyl substituent in 1- and 2-methyl-substituted 5-aminotetrazoles on the photochemistry of these molecules is evaluated. The two compounds were isolated in an argon matrix (15 K) and the matrix was subjected to in situ narrowband UV excitation at different wavelengths, which induce selectively photochemical transformations of different species (reactants and initially formed photoproducts). The progress of the reactions was followed by infrared spectroscopy, supported by quantum chemical calculations. It is shown that the photochemistries of the two isomers, 1-methyl-(1H)-tetrazole-5-amine (1a) and 2-methyl-(2H)-tetrazole-5-amine (1b), although resulting in a common intermediate diazirine 3, which undergoes subsequent photoconversion into 1-amino-3-methylcarbodiimide (H2N-N=C=N-CH3), show marked differences: formation of the amino cyanamide 4 (H2N-N(CH3)-C=N) is only observed from the photocleavage of the isomer 1a, whereas formation of the nitrile imine 2 (H2N-C-=N+=N-CH3) is only obtained from photolysis of 1b. The exclusive formation of nitrile imine from the isomer 1b points to the possibility that only the 2H-tetrazoles forms can give a direct access to nitrile imines, while observation of the amino cyanamide 4 represents a novel reaction pathway in the photochemistry of tetrazoles and seems to be characteristic of 1H-tetrazoles. The structural and vibrational characterization of both reactants and photoproducts has been undertaken.

Meteorites as catalysts for prebiotic chemistry

Saladino, Raffaele,Botta, Giorgia,Delfino, Michela,Di Mauro, Ernesto

, p. 16916 - 16922 (2014/01/06)

From outer space: Twelve meteorite specimens, representative of their major classes, catalyse the synthesis of nucleobases, carboxylic acids, aminoacids and low-molecular-weight compounds from formamide (see figure). Different chemical pathways are identified, the yields are high for a prebiotic process and the products come in rich and composite panels.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 151-51-9