Welcome to LookChem.com Sign In|Join Free

CAS

  • or

16006-65-8

Post Buying Request

16006-65-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

16006-65-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 16006-65-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,6,0,0 and 6 respectively; the second part has 2 digits, 6 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 16006-65:
(7*1)+(6*6)+(5*0)+(4*0)+(3*6)+(2*6)+(1*5)=78
78 % 10 = 8
So 16006-65-8 is a valid CAS Registry Number.

16006-65-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-(hydroxymethyl)-5-(6-methyl-9H-purin-9-yl)tetrahydrofuran-3,4-diol

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:16006-65-8 SDS

16006-65-8Downstream Products

16006-65-8Relevant articles and documents

Production, characterization and synthetic application of a purine nucleoside phosphorylase from Aeromonas hydrophila

Ubiali, Daniela,Serra, Carla D.,Serra, Immacolata,Morelli, Carlo F.,Terreni, Marco,Albertini, Alessandra M.,Manitto, Paolo,Speranzab, Giovanna

, p. 96 - 104 (2012)

Purine nucleoside phosphorylase (PNP) from Aeromonas hydrophila encoded by the deoD gene has been over-expressed in Escherichia coli, purified, characterized about its substrate specificity and used for the preparative synthesis of some 6-substituted purine-9-ribosides. Substrate specificity towards natural nucleosides showed that this PNP catalyzes the phosphorolysis of both 6-oxo- and 6-aminopurine (deoxy)ribonucleosides. A library of nucleoside analogues was synthesized and then submitted to enzymatic phosphorolysis as well. This assay revealed that 1-, 2-, 6- and 7-modified nucleosides are accepted as substrates, whereas 8-substituted nucleosides are not. A few transglycosylation reactions were carried out using 7-methylguanosine iodide (4) as a d-ribose donor and 6-substituted purines as acceptor. In particular, following this approach, 2- amino-6-chloropurine-9-riboside (2c), 6-methoxypurine- 9-riboside (2d) and 2-amino-6-(methylthio)purine- 9-riboside (2g) were synthesized in very high yield and purity.

Enzymatic Synthesis of Therapeutic Nucleosides using a Highly Versatile Purine Nucleoside 2’-DeoxyribosylTransferase from Trypanosoma brucei

Pérez, Elena,Sánchez-Murcia, Pedro A.,Jordaan, Justin,Blanco, María Dolores,Manche?o, José Miguel,Gago, Federico,Fernández-Lucas, Jesús

, p. 4406 - 4416 (2018/09/14)

The use of enzymes for the synthesis of nucleoside analogues offers several advantages over multistep chemical methods, including chemo-, regio- and stereoselectivity as well as milder reaction conditions. Herein, the production, characterization and utilization of a purine nucleoside 2’-deoxyribosyltransferase (PDT) from Trypanosoma brucei are reported. TbPDT is a dimer which displays not only excellent activity and stability over a broad range of temperatures (50–70 °C), pH (4–7) and ionic strength (0–500 mM NaCl) but also an unusual high stability under alkaline conditions (pH 8–10). TbPDT is shown to be proficient in the biosynthesis of numerous therapeutic nucleosides, including didanosine, vidarabine, cladribine, fludarabine and nelarabine. The structure-guided replacement of Val11 with either Ala or Ser resulted in variants with 2.8-fold greater activity. TbPDT was also covalently immobilized on glutaraldehyde-activated magnetic microspheres. MTbPDT3 was selected as the best derivative (4200 IU/g, activity recovery of 22 %), and could be easily recaptured and recycled for >25 reactions with negligible loss of activity. Finally, MTbPDT3 was successfully employed in the expedient synthesis of several nucleoside analogues. Taken together, our results support the notion that TbPDT has good potential as an industrial biocatalyst for the synthesis of a wide range of therapeutic nucleosides through an efficient and environmentally friendly methodology.

Direct One-Pot Synthesis of Nucleosides from Unprotected or 5-O-Monoprotected d -Ribose

Downey, A. Michael,Richter, Celin,Pohl, Radek,Mahrwald, Rainer,Hocek, Michal

, p. 4604 - 4607 (2015/09/28)

New, improved methods to access nucleosides are of general interest not only to organic chemists but to the greater scientific community as a whole due their key implications in life and disease. Current synthetic methods involve multistep procedures employing protected sugars in the glycosylation of nucleobases. Using modified Mitsunobu conditions, we report on the first direct glycosylation of purine and pyrimidine nucleobases with unprotected d-ribose to provide β-pyranosyl nucleosides and a one-pot strategy to yield β-furanosides from the heterocycle and 5-O-monoprotected d-ribose.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 16006-65-8