100870-32-4Relevant articles and documents
3D-Printed Polypropylene Continuous-Flow Column Reactors: Exploration of Reactor Utility in SNAr Reactions and the Synthesis of Bicyclic and Tetracyclic Heterocycles
Rao, Zenobia X.,Patel, Bhaven,Monaco, Alessandra,Cao, Zi Jing,Barniol-Xicota, Marta,Pichon, Enora,Ladlow, Mark,Hilton, Stephen T.
, p. 6499 - 6504 (2017)
3D printing has the potential to transform the way in which chemical reactions are carried out due to its low-cost, ease-of-use as a technology and its capacity to expedite the development of iteratively enhanced prototypes. In this present study, we developed a novel, low-cost polypropylene (PP) column reactor that was incorporated into an existing continuous-flow reactor for the synthesis of heterocycles. The utility and solvent resistance of the printed devices were explored in SNAr reactions to produce substituted aniline derivatives and in the synthesis of bicyclic and tetracyclic heterocycles. Using this approach, a range of heterocyclic compounds was synthesised including the core structure of the natural product (±)-γ-lycorane and structurally complex compounds based on the tetracyclic core of the erythrina alkaloids.
Development and applications of a practical continuous flow microwave cell
Wilson, Noel S.,Sarko, Christopher R.,Roth, Gregory P.
, p. 535 - 538 (2004)
A series of synthetic transformations were successfully and safely scaled up to multigram quantities using focused microwave irradiation with a continuous flow reaction cell that was developed in-house and which can be easily adapted to commercially avail
A green and practical reduction of N-(4-chlorophenyl)-2-nitroaniline and its derivatives to corresponding N-substituted-benzene-1,2-diamines using thiourea dioxide
Cui, Jian-Lan,Wang, Ning,Wang, Xiao,Yu, Si-Yuan,Zhong, Cong-Shan
supporting information, (2020/01/22)
A new effective approach for synthesizing diverse N-substituted-benzene-1,2-diamines is reported. The treatment of N-substituted-2-nitroanilines with thiourea dioxide in the presence of sodium hydroxide efficiently formed the corresponding N-substituted-benzene-1,2-diamines, including N-(4-chlorophenyl)benzene-1,2-diamine with a good yield of 94%. The by-product is environmentally-friendly urea and is easy to separate from the product by filtration procedure that enhances the convenience of the approach.
Indoloquinoxaline derivatives as promising multi-functional anti-Alzheimer agents
Kanhed, Ashish M.,Patel, Dushyant V.,Patel, Kirti V.,Patel, Kishan B.,Patel, Nirav R.,Prajapati, Navnit K.,Sinha, Anshuman,Thakor, Priyanka S.,Yadav, Mange Ram
, (2020/11/02)
To confront a disease like Alzheimer’s disease having complex pathogenesis, development of multitarget-directed ligands has emerged as a promising drug discovery approach. In our endeavor towards the development of multitarget-directed ligands for Alzheimer’s disease, a series of indoloquinoxaline derivatives were designed and synthesized. In vitro cholinesterase inhibition studies revealed that all the synthesized compounds exhibited moderate to good cholinesterase inhibitory activity. 6-(6-(Piperidin-1-yl)hexyl)-6H-indolo[2,3-b]quinoxaline 9f was identified as the most potent and selective BuChE inhibitor (IC50 = 0.96 μM, selectivity index = 0.17) that possessed 2 fold higher BuChE inhibitory activity compared to the commercially approved reference drug donepezil (IC50 = 1.87 μM). Moreover, compound 9f is also endowed with self-induced Aβ1-42 aggregation inhibitory activity (51.24% inhibition at 50 μM concentration). Some of the compounds of the series also displayed moderate anti-oxidant activity. To perceive a putative binding mode of the compound 9f, molecular docking studies were carried out, and the results pointed out significant interactions of compound 9f with the enzymes in the binding sites of cholinesterases as well as Aβ1-42. Additionally, compound 9f exhibited favorable in silico ADMET properties. Put together these findings project compound 9f as a potential multitarget-directed ligand in the direction of developing novel anti-AD drugs. Communicated by Ramaswamy H. Sarma.
Design, synthesis and biological evaluation of novel 4-phenoxypyridine based 3-oxo-3,4-dihydroquinoxaline-2-carboxamide derivatives as potential c-Met kinase inhibitors
Wang, Zhen,Shi, Jiantao,Zhu, Xianglong,Zhao, Wenwen,Gong, Yilin,Hao, Xuechen,Hou, Yunlei,Liu, Yajing,Ding, Shi,Liu, Ju,Chen, Ye
, (2020/10/21)
Blocking c-Met kinase activity by small-molecule inhibitors has been identified as a promising approach for the treatment of cancers. Herein, we described the design, synthesis, and biological evaluation of a series of 4-phenoxypyridine-based 3-oxo-3,4-dihydroquinoxaline derivatives as c-Met kinase inhibitors. Inhibitory activitives against c-Met kinase evaluation indicated that most of compounds showed excellent c-Met kinase activity in vitro, and IC50 values of ten compounds (23a, 23e, 23f, 23l, 23r, 23s, 23v, 23w, 23x and 23y) were less than 10.00 nM. Notably, three of them (23v, 23w and 23y) showed remarkable potency with IC50 values of 2.31 nM, 1.91 nM and 2.44 nM, respectively, and thus they were more potent than positive control drug foretinib (c-Met, IC50 = 2.53 nM). Cytotoxic evaluation indicated the most promising compound 23w showed remarkable cytotoxicity against A549, H460 and HT-29 cell lines with IC50 values of 1.57 μM, 0.94 μM and 0.65 μM, respectively. Furthermore, the acridine orange/ethidium bromide (AO/EB) staining, cell apoptosis assays by flow cytometry, wound-healing assays and transwell migration assays on HT-29 and/or A549 cells of 23w were performed. Especially compound 23w, which displayed potent antitumor, apoptosis induction and antimetastatic activity, could be used as a promising lead for further development. Meanwhile, their preliminary structure-activity relationships (SARs) were also discussed.
Design, synthesis, and biological evaluation of 4-phenoxyquinoline derivatives as potent c-Met kinase inhibitor
Yang, Yifeng,Li, Yingxiu,Hou, Yunlei,Qin, Mingze,Gong, Ping,Liu, Ju,Zhao, Yanfang
supporting information, (2019/10/28)
A series of novel 4-phenoxyquinoline derivatives containing 3-oxo-3,4-dihydro-quinoxaline moiety were synthesized and evaluated for their antiproliferative activity against five human cancer cell lines (A549, H460, HT-29, MKN-45 and U87MG) in vitro. Most of the tested compounds exhibited more potent inhibitory activities than the positive control foretinib. Compound 1b, 1s and 1t were further examined for their inhibitory activity against c-Met kinase. The most promising compound 1s (with c-Met IC50 value of 1.42 nM) showed remarkable cytotoxicity against A549, H460, HT-29, MKN45 and U87MG cell lines with IC50 values of 0.39 μM, 0.18 μM, 0.38 μM, 0.81 μM, respectively. Their preliminary structure-activity relationships (SARs) study indicated that the replacement of the aromatic ring with the cyclohexane improved their antiproliferative activity.
Decarboxylative ipso Amination of Activated Benzoic Acids
Pichette Drapeau, Martin,Bahri, Janet,Lichte, Dominik,Goo?en, Lukas J.
supporting information, p. 892 - 896 (2019/01/04)
In the presence of a bimetallic Pd/Cu system with 1,10-phenanthroline as the ligand and either air or N-methylmorpholine N-oxide as the oxidant, electron-deficient benzoic acids undergo oxidative decarboxylative coupling with unprotected amines. This operationally simple aniline synthesis is widely applicable with respect to the amine and gives good yields, even on multigram scale. The orthogonality of this reaction to other Pd-catalyzed cross-couplings allows the concise synthesis of multisubstituted arenes by sequential C?C, C?Cl, and C?N functionalizations. Mechanistic investigations suggest the intermediacy of a hypervalent Pd species.
Synthesis and antitumor evaluation of novel 5-hydrosulfonyl-1H-benzo[d]imidazol-2(3H)-one derivatives
Ouyang, Guang,Tong, Rongsheng,Li, Jinqi,Bai, Lan,Ouyang, Liang,Duan, Xingmei,Li, Fengqiong,He, Pin,Shi, Jianyou,He, Yuxin
, (2016/05/24)
A series of novel 5-hydrosulfonyl-1H-benzo[d]imidazol-2(3H)-one derivatives bearing natural product substructures has been successfully synthesized and their antitumor activity studied. These newly synthesized derivatives were characterized by 1/sup
Discovery of isoalloxazine derivatives as a new class of potential anti-Alzheimer agents and their synthesis
Kanhed, Ashish M.,Sinha, Anshuman,Machhi, Jatin,Tripathi, Ashutosh,Parikh, Zalak S.,Pillai, Prakash P.,Giridhar, Rajani,Yadav, Mange Ram
, p. 7 - 12 (2015/06/08)
This article describes discovery of a novel and new class of cholinesterase inhibitors as potential therapeutics for Alzheimer's disease. A series of novel isoalloxazine derivatives were synthesized and biologically evaluated for their potential inhibitory outcome for both acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds exhibited high activity against both the enzymes AChE as well as BuChE. Of the synthesized compounds, the most potent isoalloxazine derivatives (7m and 7q) showed IC50 values of 4.72 μM and 5.22 μM respectively against AChE; and, 6.98 μM and 5.29 μM respectively against BuChE. These two compounds were further evaluated for their anti-aggregatory activity for β-amyloid (Aβ) in presence and absence of AChE by performing Thioflavin-T (ThT) assay and Congo red (CR) binding assay. In order to evaluate cytotoxic profile of these two potential compounds, cell viability assay of SH-SY5Y human neuroblastoma cells was performed. Further, to understand the binding behavior of these two compounds with AChE and BuChE enzymes, docking studies have been reported.
Benzimidazole and imidazole inhibitors of histone deacetylases: Synthesis and biological activity
Bressi, Jerome C.,Jong, Ron de,Wu, Yiqin,Jennings, Andy J.,Brown, Jason W.,O'Connell, Shawn,Tari, Leslie W.,Skene, Robert J.,Vu, Phong,Navre, Marc,Cao, Xiaodong,Gangloff, Anthony R.
scheme or table, p. 3138 - 3141 (2010/09/03)
A series of N-hydroxy-3-[3-(1-substituted-1H-benzoimidazol-2-yl)-phenyl]-acrylamides (5a-5ab) and N-hydroxy-3-[3-(1,4,5-trisubstituted-1H-imidazol-2-yl)-phenyl]-acrylamides (12a-s) were designed, synthesized, and found to be nanomolar inhibitors of human histone deacetylases. Multiple compounds bearing an N1-piperidine demonstrate EC50s of 20-100 nM in human A549, HL60, and PC3 cells, in vitro and in vivo hyperacetylation of histones H3 and H4, and induction of p21waf. Compound 5x displays efficacy in human tumor xenograft models.