1009330-96-4Relevant articles and documents
Synthesis, spectral, electrochemical and catalytic properties of Ru(III) Schiff base complexes containing N, O donors
Raja, K. Kanmani,Indra Gandhi,Lekha,Easwaramoorthy,Rajagopal
, p. 49 - 57 (2014)
A series of new hexa coordinated ruthenium(III) complexes of the type [RuY2(EPh3)2(X-DPMP)] (where Y = Br or Cl; E = P or As; DPMP = 2-[(2,6-Diisopropyl-phenylimino)-methyl]-phenol, X = H, Br, Cl, I and Ph) have been synthesized by equimolar [RuY3(EPh 3)3] and the Schiff base ligands in benzene. The bidentate Schiff base ligands (X-DPMP) have been derived from condensation of 2,6-diisopropylaniline with mono and multisubstituted salicylaldehyde derivatives. The complexes have been characterized by elemental analysis, magnetic susceptibility, UV-Vis., IR and EPR spectral and electrochemical measurements. All the ruthenium(III) complexes are found to be stable, paramagnetic, low spin, redox active and display either quasi reversible or irreversible redox couples based on metal centre. They have exhibited catalytic activity for the oxidation of wide range of primary and secondary alcohols to corresponding aldehydes or ketones with moderate to high conversion in the presence of N-methylmorpholine-N-oxide (NMO) as co-oxidant.
Synthesis, structural, spectral, electrochemical and catalytic properties of VO (IV) complexes containing N, O donors
Kanmani Raja,Lekha,Hariharan,Easwaramoorthy,Rajagopal
, p. 227 - 233 (2014/12/10)
Complexes of the general formula M (X-DPMP)2[where, (M = VOIV), DPMP = 2-[(2,6-Diisopropyl-phenylimino)-methyl]-phenol and X = Br, BrCl, Ph] have been synthesized and characterized by IR, electronic, ESR spectral, magnetic and cyclic voltammetry measurements. The newly synthesized Schiff bases act as monobasic bidentate ligand in their complexes. The spectral data indicate that the ligand coordinates through the phenolic oxygen and azomethine nitrogen atoms. The observed parameters, hyperfine splitting constant (A) and Landé splitting energy (g) are found to be in good agreement with the values generally observed for the vanadyl complex with square pyramidal geometry. The cyclic voltammetric redox potentials of VO (IV) complexes suggest the existence of irreversible pairs in acetonitrile. The vanadium complexes were screened for sulfide oxidation studies and VO (C19H21BrON)2or [VO (Br-DPMP)2] was found to be an efficient catalyst for the oxidation of various sulfides to sulfoxides with PhIO terminal oxidant. Both aryl and alkyl sulfides were selected and converted into sulfoxides in good to excellent yields.