Welcome to LookChem.com Sign In|Join Free

CAS

  • or

10259-15-1

Post Buying Request

10259-15-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

10259-15-1 Usage

Uses

Pyridine-4-d1 (CAS# 10259-15-1) is a useful isotopically labeled research compound.

Check Digit Verification of cas no

The CAS Registry Mumber 10259-15-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,0,2,5 and 9 respectively; the second part has 2 digits, 1 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 10259-15:
(7*1)+(6*0)+(5*2)+(4*5)+(3*9)+(2*1)+(1*5)=71
71 % 10 = 1
So 10259-15-1 is a valid CAS Registry Number.

10259-15-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name PYRIDINE-4-D1

1.2 Other means of identification

Product number -
Other names 4-deuterio-pyridine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:10259-15-1 SDS

10259-15-1Downstream Products

10259-15-1Relevant articles and documents

-

Mata et al.

, p. 1,4 (1977)

-

On the Structure and Mechanism of Formation of the Lansbury Reagent, Lithium Tetrakis(N-dihydropyridyl)aluminate

Tanner, Dennis D.,Yang, Chi-Ming

, p. 1840 - 1846 (1993)

The reaction of lithium aluminium hydride (LAH) and pyridine yields five lithium tetrakis(N-dihydropyridyl)aluminate (LDPA) isomers.The LDPA isomers are formed reversibly and contain both 1,2- and 1,4-dihydropyridyl ligands.The 1,2-dihydropyridyl ligands are incorporated as the products of kinetic control while the 1,4-dihydropyridyl ligands are formed as the thermodynamic products.When LDPA is synthesized using lithium aluminium deuteride and the deuterated LDPA is placed in pyridine solvent, the ligands exchange with the pyridine in the solvent pool and form pyridine which is deuterated mainly in the 2- and 4-position.A small amount of 3-deuterated pyridine is also detected.The formation of 3-deuteriopyridine suggests that the pyridine radical anion is an intermediate present during the reaction of LAH with pyridine.In support of this suggestion, when LAH and pyridine are mixed, the EPR spectrum of the lithium salt of the pyridyl radical anion is observed.The stepwise addition of ligands to form LDPA is observed (NMR).Five aluminate species are detectable (27Al NMR): LAH , mono-, di-, and -trisubstituted aluminium hydride, and LDPA.The hydrolysis of LDPA in solvent pyridine-d5 yields a mixture of 1,4-, 1,2-, and 2,5-dihydropyridines.The dihydropyridines are stable in the absence of oxygen.

PREPARATION AND MICROWAVE SPECTRA OF PYRIDINE N-OXIDE AND DEUTERATED PYRIDINE N-OXIDES, COMPLETE MOLECULAR STRUCTURE OF PYRIDINE N-OXIDE.

Sorensen, G. O.,Tang-Pedersen, A.,Pedersen, E. J.

, p. 263 - 268 (1983)

Pyridine N-oxide and the monodeuterated species have been prepared and their microwave spectra investigated for J-values up to 10.The complete rs structure is determined from these data combined with data from earlier measurements on the 13C- and the 15N-substituted species .The N-O bond length obtained here is intermediate between the typical single and double bond length found in other gas phase molecular structures.The structure of the C-N-C part of pyridine N-oxide is found to be significantly different from the corresponding part of the pyridine structure.

Functionalization of Pyridine via Direct Metallation

Verbeek, Jacob,George, Albert V. E.,Jong, Robertus L. P. de,Brandsma, Lambert

, p. 257 - 258 (1984)

The isolation of mixtures of 2-, 3-, and 4-deuteriopyridine, 2-, 3-, and 4-trimethylsilylpyridine, or 2-, 3-, and 4-methylthiopyridine indicates successful metallation of pyridine with a 1:1 mixture of BuLi-ButOK in tetrahydrofuran-hexane at -100 deg C.

Electrocatalytic Deuteration of Halides with D2O as the Deuterium Source over a Copper Nanowire Arrays Cathode

Chong, Xiaodan,Han, Shuyan,Li, Mengyang,Liu, Cuibo,Zhang, Bin

supporting information, p. 18527 - 18531 (2020/08/21)

Precise deuterium incorporation with controllable deuterated sites is extremely desirable. Here, a facile and efficient electrocatalytic deuterodehalogenation of halides using D2O as the deuteration reagent and copper nanowire arrays (Cu NWAs) electrochemically formed in situ as the cathode was demonstrated. A cross-coupling of carbon and deuterium free radicals might be involved for this ipso-selective deuteration. This method exhibited excellent chemoselectivity and high compatibility with the easily reducible functional groups (C=C, C≡C, C=O, C=N, C≡N). The C?H to C?D transformations were achieved with high yields and deuterium ratios through a one-pot halogenation–deuterodehalogenation process. Efficient deuteration of less-active bromide substrates, specific deuterium incorporation into top-selling pharmaceuticals, and oxidant-free paired anodic synthesis of high-value chemicals with low energy input highlighted the potential practicality.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 10259-15-1