10264-24-1Relevant articles and documents
Chemo- and regioselective homogeneous rhodium-catalyzed hydroamidomethylation of terminal alkenes to N-alkylamides
Raoufmoghaddam, Saeed,Drent, Eite,Bouwman, Elisabeth
, p. 1759 - 1773 (2013/10/21)
A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through catalytic hydroamidomethylation with 1-pentene and acetamide as model substrates. For appropriate catalyst performance, it appears to be essential that catalytic amounts of a strong acid promoter, such as p-toluenesulfonic acid (HOTs), as well as larger amounts of a weakly acidic protic promoter, particularly hexafluoroisopropyl alcohol (HORF) are applied. Apart from the product N-1-hexylacetamide, the isomeric unsaturated intermediates, hexanol and higher mass byproducts, as well as the corresponding isomeric branched products, can be formed. Under optimized conditions, almost full alkene conversion can be achieved with more than 80 % selectivity to the product N-1-hexylamide. Interestingly, in the presence of a relatively high concentration of HORF, the same catalyst system shows a remarkably high selectivity for the formation of hexanol from 1-pentene with syngas, thus presenting a unique example of a selective rhodium-catalyzed hydroformylation-hydrogenation tandem reaction under mild conditions. Time-dependent product formation during hydroamidomethylation batch experiments provides evidence for aldehyde and unsaturated intermediates; this clearly indicates the three-step hydroformylation/condensation/hydrogenation reaction sequence that takes place in hydroamidomethylation. One likely role of the weakly acidic protic promoter, HORF, in combination with the strong acid HOTs, is to establish a dual-functionality rhodium catalyst system comprised of a neutral rhodium(I) hydroformylation catalyst species and a cationic rhodium(III) complex capable of selectively reducing the imide and/or ene-amide intermediates that are in a dynamic, acid-catalyzed condensation equilibrium with the aldehyde and amide in a syngas environment. Taking control: A rhodium/xantphos homogeneous catalyst system has been developed for direct chemo- and regioselective mono-N-alkylation of primary amides with 1-alkenes and syngas through the new catalytic hydroamidomethylation reaction (see picture). Copyright
Rhodium-catalyzed homogeneous reductive amidation of aldehydes
Raoufmoghaddam, Saeed,Drent, Eite,Bouwman, Elisabeth
supporting information, p. 717 - 733 (2013/04/23)
The catalytic reductive amidation of an aldehyde (hexanal) with an amide (acetamide) is reported. Apart from the desired N-hexylacetamide, the two isomeric unsaturated intermediates as well as hexanol are produced together with higher mass products that arise from aldol condensation and diamide coupling of the aldehyde. Screening of different catalyst precursor salts, ligands and reaction conditions led to the finding that the catalytic system based on the (cyclooctadiene)rhodium chloride dimer, [Rh(cod)Cl]2, in combination with the ligand xantphos and an acid co-catalyst results in high selectivity for the desired product. Under optimized conditions nearly full conversion is reached with high selectivity to the desired N-alkylamide and with a very high N-alkylamide/alcohol ratio, while producing only small amounts of by-products. The scope of the reaction has been investigated using different amides as well as aldehydes; the results show the general applicability of this novel reaction, but with electron-withdrawing amides the selectivity to N-alkylamide is lower. NMR studies showed that the nucleophilic addition of acetamide to hexanal is acid catalyzed, forming N-(1-hydroxyhexyl)acetamide in equilibrium with both hexanal and the dehydrated unsaturated imides. A catalytic mechanism is proposed in which a strong acid such as HOTs acts as a co-catalyst by establishing a rapid chemical equilibrium between the aldehyde, acetamide and the intermediates. Furthermore, it is proposed that the presence of acid causes a change in catalytic species, enabling a cationic Rh/xantphos hydrogenation catalyst to selectively hydrogenate the intermediates to N-hexylacetamide in the presence of hexanal. Copyright
Selective catalytic sp3 C-O bond cleavage with C-N bond formation in 3-alkoxy-1-propanols
Chen, Cheng,Hong, Soon Hyeok
supporting information; experimental part, p. 2992 - 2995 (2012/07/28)
The ruthenium catalyzed selective sp3 C-O cleavage with amide formation was reported in reactions of 3-alkoxy-1-propanol derivatives and amines. The cleavage only occurs at the C3-O position even with 3-benzyloxy-1-propanol. Based on the experimental results, O-bound and C-bound Ru enolate complexes were proposed as key intermediates for the unique selective sp3 C-O bond cleavage in 3-alkoxy-1-propanols.