1027856-54-7Relevant articles and documents
Organic dye bearing asymmetric double donor-π-Acceptor chains for dye-sensitized solar cells
Hong, Yanping,Liao, Jin-Yun,Cao, Derong,Zang, Xufeng,Kuang, Dai-Bin,Wang, Lingyun,Meier, Herbert,Su, Cheng-Yong
, p. 8015 - 8021 (2011)
A novel efficient metal free sensitizer containing asymmetric double donor-π-acceptor chains (DC) was synthesized for dye-sensitized solar cells (DSSCs). Comparing to 3.80%, 4.40% and 4.64% for the DSSCs based on the dyes with single chain (SC1, SC2) and
Synthesis of novel GABA uptake inhibitors. 4. Bioisosteric transformation and successive optimization of known GABA uptake inhibitors leading to a series of potent anticonvulsant drug candidates
Andersen, Knud Erik,S?rensen, Jan L.,Huusfeldt, Per O.,Knutsen, Lars J. S.,Lau, Jesper,Lundt, Behrend F.,Petersen, Hans,Suzdak, Peter D.,Swedberg, Michael D. B.
, p. 4281 - 4291 (2007/10/03)
By bioisosteric transformations and successive optimization of known GABA uptake inhibitors, several series of novel GABA uptake inhibitors have been prepared by different synthetic approaches. These compounds are derivatives of nipecotic acid and guvacine, substituted at the nitrogen of these amino acids by various lipophilic moieties such as diarylaminoalkoxyalkyl or diarylalkoxyalkyl. The in vitro values for inhibition of [3H]GABA uptake in rat synaptosomes was determined for each compound, and it was found that the most potent compound from this series, (R)-1-(2-(3,3-diphenyl-1-propyloxy)ethyl)-3-piperidinecarboxylic acid hydrochloride (29), is so far the most potent parent compound inhibiting GABA uptake into synaptosomes. Structure-activity results confirm our earlier observations, that an electronegative center in the chain connecting the amino acid and diaryl moiety is very critical in order to obtain high in vitro potency. Several of the novel compounds were also evaluated for their ability in vivo to inhibit clonic seizures induced by a 15 mg/kg (ip) dose of methyl 6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM). Some of the compounds tested show a high in vivo potency comparable with that of the recently launched anticonvulsant product 6 ((R)-1-(4,4-bis(3-methyl-2- thienyl)-3-butenyl)-3-piperidinecarboxylic acid).