Welcome to LookChem.com Sign In|Join Free

CAS

  • or

103966-65-0

Post Buying Request

103966-65-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • Benzenemethanol, alpha-methyl-3-nitro-, (alphaS)- (9CI)

    Cas No: 103966-65-0

  • No Data

  • 10 Gram

  • commercial production Metric Ton/Day

  • Senova Pharma
  • Contact Supplier

103966-65-0 Usage

General Description

Benzenemethanol, alpha-methyl-3-nitro-, (alphaS)- (9CI) is a chemical compound used in the production of pharmaceuticals and organic synthesis. It is a chiral molecule, meaning it has a non-superimposable mirror image, and the (alphaS) designation indicates its specific stereochemistry. The compound is characterized by its alpha-methyl-3-nitro- and benzenemethanol functional groups, which give it unique chemical properties and potential applications in various chemical and pharmaceutical processes. Benzenemethanol, alpha-methyl-3-nitro-, (alphaS)- (9CI) may be used as a building block in the synthesis of more complex molecules and has the potential to exhibit biological activity in pharmaceutical contexts. However, due to its nitro functional group, it should be handled with care and attention to safety protocols.

Check Digit Verification of cas no

The CAS Registry Mumber 103966-65-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,0,3,9,6 and 6 respectively; the second part has 2 digits, 6 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 103966-65:
(8*1)+(7*0)+(6*3)+(5*9)+(4*6)+(3*6)+(2*6)+(1*5)=130
130 % 10 = 0
So 103966-65-0 is a valid CAS Registry Number.

103966-65-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (1S)-1-(3-Nitrophenyl)ethanol

1.2 Other means of identification

Product number -
Other names (S)-1-(3-nitrophenyl)ethanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:103966-65-0 SDS

103966-65-0Relevant articles and documents

Chiral (η6-p-cymene)ruthenium(II) complexes containing monodentate acylthiourea ligands for efficient asymmetric transfer hydrogenation of ketones

Sheeba, Mani Mary,Muthu Tamizh, Manoharan,Farrugia, Louis J.,Endo, Akira,Karvembu, Ramasamy

, p. 540 - 550 (2014)

The new chiral ligands (R)-/(S)-N-((1-phenylethyl)carbamothioyl)benzamide (L1/L2), (R)-/(S)-N-((1-phenylethyl)carbamothioyl)thiophene-2-carboxamide (L3/L4), and (R)-/(S)-N-((1-phenylethyl)carbamothioyl)furan-2-carboxamide (L5/L6) were synthesized, characterized, and used to prepare novel chiral Ru(II) complexes. The chiral Ru(II) complexes 1-6 were obtained from reactions between the chiral ligands L1-L6 and [RuCl2(p-cymene)2] 2. The complexes were characterized by analytical and spectroscopic (NMR, FT-IR, electronic) techniques. The solid-state structures of the ligands L1 and L3 and complexes 1, 4, and 6 were determined by single-crystal X-ray diffraction methods. In all of the complexes, the ligand is bound to the Ru(II) center only via the sulfur donor atom. This monodentate coordination of the acylthiourea ligands was observed for the first time with ruthenium. The Ru(II) complexes 1-6 all act as efficient catalysts for the asymmetric transfer hydrogenation of aromatic ketones in the presence of 2-propanol and KOH to produce chiral alcohols. All of the catalysts showed excellent conversions of up to 99% and enantiomeric excesses of up to 99%.

Production of enantiomerically enriched chiral carbinols using Weissella paramesenteroides as a novel whole cell biocatalyst

Tozlu, Caner,?ahin, Engin,Serencam, Hüseyin,Dertli, Enes

, p. 388 - 398 (2019)

In this study, four bacterial strains were tested for their ability to reduce acetophenones to its corresponding alcohol. Among these strains Weissella paramesenteroides N7 was found to be the most successful biocatalyst to reduce the ketones to the corresponding alcohols. The reaction conditions were systematically optimized for W. paramesenteroides N7 that resulted in high enantioselectivity and conversion rates for the bioreduction. The scale-up asymmetric reduction of 1-(4-methoxyphenyl) propan-1-one (1r) by W. paramesenteroides N7 gave (R)-1-(4-methoxyphenyl) propan-1-ol (2r) with 94% yield and >99% enantiomeric excess. This is the first report showing the synthesis of (R)-1-(4-methoxyphenyl) propan-1-ol (2r) in enantiopure form using a biocatalyst on a gram scale. The whole cell catalyzed the reductions of ketone substrates on the preparative scale, demonstrating that W. paramesenteroides N7 would be a valuable biocatalyst for the preparation of chiral aromatic alcohols of pharmaceutical interest as a promising and alternative green approach.

A new class of well-defined ruthenium catalysts for enantioselective transfer hydrogenation of various ketones

Kayan, Cezmi,Meri?, Nermin,Rafikova, Khadichakhan,Zazybin, Alexey,Gürbüz, Nevin,Karakaplan, Mehmet,Aydemir, Murat

, p. 37 - 47 (2018)

A pair of novel optically pure phosphinite ligands were synthesized by ring opening reaction of chiral amines with (R)-styrene oxide or (S)-glycidyl phenyl ether oxide using a straightforward method in high yields and their ruthenium complexes were described in detail. The ruthenium complexes proved to be highly efficient catalysts for the enantioselective hydrogenation of ketones, affording products up to 99% ee. The results showed that the corresponding chiral alcohols could be obtained with high activity and excellent enantioselectivities at the desired temperature. (2S)-1-{benzyl[(1S)-1-(naphthalen-1-yl)ethyl]amino}-3-phenoxypropan-2-yl diphenylphosphinito[dichloro(η6-benzene)ruthenium (II)] acts an excellent catalyst in the reduction of ketones, giving the corresponding alcohol up to 99% ee.

Catalysts for the asymmetric transfer hydrogenation of various ketones from [3-[(2S)-2-[(diphenylphosphanyl)oxy]-3-phenoxypropyl]-1-methyl-1H-imidazol-3-ium chloride] and [Ru(η6-arene)(μ-Cl)Cl]2, Ir(η5-C5Me5)(μ-Cl)Cl]2 or [Rh(μ-Cl)(cod)]2

Meri?, Nermin,Arslan, Nevin,Kayan, Cezmi,Rafikova, Khadichakhan,Zazybin, Alexey,Kerimkulova, Aygul,Aydemir, Murat

, p. 108 - 118 (2019)

The combination of [3-[(2S)-2-[(diphenylphosphanyl)oxy]-3-phenoxypropyl]-1-methyl-1H-imidazol-3-ium chloride] with [Ru(η6-arene)(μ-Cl)Cl]2, Ir(η5-C5Me5)(μ-Cl)Cl]2 or [Rh(μ-Cl)(cod)]2, in the presence of KOH/isoPrOH, has been found to generate catalysts that are capable of enantioselectively reducing alkyl, aryl ketones to the corresponding (R)-alcohols. Under optimized conditions, when the catalysts were applied to the asymmetric transfer hydrogenation, we obtained the secondary alcohol products in high conversions and enantioselectivities using only 0.5 mol% catalyst loading. In addition, [3-[(2S)-2-{[(chloro(?4-1,5-cyclooctadiene)rhodium)diphenyl phosphanyl] oxy}-3-phenoxypropyl]-1-methyl-1H-imidazol-3-ium chloride], (6) complex is much more active than the other analogous complexes in the transfer hydrogenation. Catalyst 6 acts as excellent catalysts, giving the corresponding (R)-1-phenyl ethanol in 99% conversion in 30 min (TOF ≤ 396 h?1) and in high enantioselectivity (92% ee).

New functional chiral P-based ligands and application in ruthenium-catalyzed enantioselective transfer hydrogenation of ketones

Meri?, Nermin,Kayan, Cezmi,Gürbüz, Nevin,Karakaplan, Mehmet,Binbay, Nil Ertekin,Aydemir, Murat

, p. 1739 - 1749 (2017)

Metal-catalyzed asymmetric transfer hydrogenation is a powerful and practical method for the reduction of ketones to produce the corresponding secondary alcohols, which are valuable building blocks in the pharmaceutical, perfume, and agrochemical industries. Hence, a series of novel chiral β-amino alcohols were synthesized by chiral amines with regioselective ring opening of (S)-propylene oxide or reaction with (S)-(+)-2-hydroxypropyl p-toluenesulfonate by a straightforward method. The chiral ruthenium catalytic systems generated from [Ru(arene)(μ-Cl)Cl]2 complexes and chiral phosphinite ligands based on amino alcohol derivatives were employed in asymmetric transfer hydrogenation of ketones to give the corresponding optically active alcohols; (2S)-1-{[(2S)-2-[(diphenylphosphanyl)oxy]propyl][(1R)-1-phenylethyl]amino}propan-2-yldiphenylphosphinitobis[dichol-oro(η6-benzene)ruthenium(II)] acts an excellent catalyst in the reduction of α-naphthyl methyl ketone, giving the corresponding alcohol with up to 99% ee. The substituents on the backbone of the ligands were found to have a remarkable effect on both the conversion and enantioselectivity of the catalysts. Furthermore, this transfer hydrogenation is characterized by low reversibility under these conditions.

Enantioselective reduction of aryl and hetero aryl methyl ketones using plant cell suspension cultures of Vigna radiata

Santhanam, Srinath,Patil, Swati,Shanmugam, Ramu,Dronamraju V.L, Sarada,Balasundaram, Usha,Baburaj, Baskar

, p. 223 - 229 (2017)

Vigna radiata was investigated as whole cell catalyst for the bioreduction of aryl and heteroaryl prochiral ketones into optically active alcohols. The study indicates selective bioreduction of different substituted aryl and heteroaryl ketones (1a–12a) to their respective (S)–chiral alcohols (1b–12b) in good to high enantioselectivity (77.7–97.5%) with very good yields (73–82%). The results obtained confirm that the keto reductase has broad substrate specificity and selectivity in catalyzing both six and five-membered heteroaryl methyl ketones. The current methodology substantiates a promising and alternative green approach for the synthesis of secondary chiral alcohols of biological importance in a mild, cheap and environmentally benign process.

Candida tropicalis CE017: A new Brazilian enzymatic source for the bioreduction of aromatic prochiral ketones

Vieira, Gizelle A. B.,De Freitas Araujo, Daniel M.,Lemos, Telma L. G.,De Mattos, Marcos Carlos,Da Conceic?a?o F. De Oliveira, Maria,Melo, Va?nia M. M.,De Gonzalo, Gonzalo,Gotor-Ferna?ndez, Vicente,Gotor, Vicente

, p. 1509 - 1516 (2010)

The reactivity and stereoselectivity showed by a new strain of Candida tropicalis in the reduction of prochiral ketones have been compared with the ones previously attained in our laboratory using microorganisms from the Brazilian biodiversity. In this manner, Candida tropicalis has demonstrated its versatility as stereoselective agent in the bioreduction of a series of aromatic ketones. These prochiral compounds were converted into their corresponding optically alcohols with moderate to excellent stereopreference depending on the substrate structure. Among ketones tested, nitroacetophenones were enzymatically reduced to enantiopure (S)-alcohol with complete conversion.

Arene-Immobilized Ru(II)/TsDPEN Complexes: Synthesis and Applications to the Asymmetric Transfer Hydrogenation of Ketones

Doherty, Simon,Knight, Julian G.,Alshaikh, Hind,Wilson, James,Waddell, Paul G.,Wills, Corinne,Dixon, Casey M.

supporting information, p. 226 - 235 (2020/12/31)

The Noyori-Ikariya (arene)Ru(II)/TsDPEN precatalyst has been anchored to amorphous silica and DAVISIL through the η6-coordinated arene ligand via a straightforward synthesis and the derived systems, (arene)Ru(II)/TsDPEN@silica and (arene)Ru(II)/TsDPEN@DAVISIL, form highly efficient catalysts for the asymmetric transfer hydrogenation of a range of electron-rich and electron-poor aromatic ketones, giving good conversion and excellent ee's under mild reaction conditions. Moreover, catalyst generated in situ immediately prior to addition of substrate and hydrogen donor, by reaction of silica-supported [(arene)RuCl2]2 with (S,S)-TsDPEN, was as efficient as that generated from its preformed counterpart [(arene)Ru{(S,S)-TsDPEN}Cl]@silica. Gratifyingly, the initial TOFs (up to 1085 h?1) and ee's (96–97 %) obtained with these catalysts either rivalled or outperformed those previously reported for catalysts supported by either silica or polymer immobilized through one of the nitrogen atoms of TsDPEN. While the high ee's were also maintained during recycle studies, the conversion dropped steadily over the first three runs due to gradual leaching of the ruthenium.

One-pot kinetic resolution-Mitsunobu reaction to access optically pure compounds, using silver salts in the substitution protocol

Raval, Hiten B.,Bedekar, Ashutosh V.

, p. 21238 - 21243 (2020/12/31)

A practical method is developed to access chiral arylalkyl carbinols with a high yield from racemic alcohols. A one-pot enzyme mediated Kinetic Resolution followed by Mitsunobu esterification of the unreacted enantiomer of alcohol with metal acetate results in a nearly complete formation of chiral acetate. Substitution with AgOAc was found to be the most efficient, and the use of sub stoichiometric amounts of AgNO3 and excess of NaOAc affords comparable results; the protocol was further extended to introduce azide as a nucleophile.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 103966-65-0