Welcome to LookChem.com Sign In|Join Free

CAS

  • or

105674-91-7

Post Buying Request

105674-91-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

105674-91-7 Usage

Description

3-Quinolinecarboxylic acid, 7-aMino-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxois a complex organic compound with a unique molecular structure. It is characterized by its quinoline core, which is a tricyclic aromatic system, and the presence of various functional groups such as amino, cyclopropyl, and fluoro. 3-Quinolinecarboxylic acid, 7-aMino-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxoexhibits interesting chemical and biological properties, making it a potential candidate for various applications in different industries.

Uses

Used in Environmental Applications:
3-Quinolinecarboxylic acid, 7-aMino-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxois used as a catalyst for the activation of peroxymonosulfate (PMS) in the degradation of Ciprofloxacin, a widely used antibiotic. The activation of PMS by this compound leads to the generation of highly reactive sulfate and hydroxyl radicals, which can effectively break down and remove Ciprofloxacin from contaminated water sources. This application is particularly relevant in the context of addressing the growing concerns about antibiotic resistance and the environmental impact of pharmaceuticals.

Check Digit Verification of cas no

The CAS Registry Mumber 105674-91-7 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,0,5,6,7 and 4 respectively; the second part has 2 digits, 9 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 105674-91:
(8*1)+(7*0)+(6*5)+(5*6)+(4*7)+(3*4)+(2*9)+(1*1)=127
127 % 10 = 7
So 105674-91-7 is a valid CAS Registry Number.

105674-91-7Downstream Products

105674-91-7Relevant articles and documents

Kinetics of micellar effect of non-ionic surfactant on oxidative degradation of ciprofloxacin

Singh, Ajaya Kumar,Shrivastava, Alpa,Shrivastava, Dilip R.,Patel, Rajmani,Sachdev, Neerja

, p. 359 - 368 (2020)

Oxidative degradation kinetics of leading fluoroquinolone family drug ciprofloxacin (CIP) by chloramine-T (CAT) in TX-100 micelle media was studied spectrophotometrically at 275 nm and 298 K. In pseudo-first-order conditions the rate constant (kobs) decreased regularly with increasing [TX-100]. To understand the self-organizing activities of TX-100, CMC values in varying reaction conditions had been evaluated. The role of non-ionic surfactant in the oxidative degradation process of ciprofloxacin by chlorinating agent chloramine-T is explained in terms of mathematical model explained by Menger-Portnoy. The reaction showed first to zero order dependence on [CAT] and fractional order on [CIP]. Increasing [H+] decreased the rate of reaction. The effect of ionic strength and solvent polarity of the medium in reaction conditions were studied. The effects of added salts [HSO4Na], [KCl], [KNO3] and [K2SO4] had also been studied. The stoichiometry of the reaction determined was 1:2 and the oxidation products were identified by LC-EI-MS. The analysis of degradation product of ciprofloxacin evidently reveals that the piperazine moiety is active site for oxidation in the reaction. Activation parameters were studied to propose appropriate mechanism for the reaction.

Nitric oxide reactivity accounts for N-nitroso-ciprofloxacin formation under nitrate-reducing conditions

Brienza, Monica,Chiron, Serge,Manasfi, Rayana,Sauvêtre, Andrés

, (2020/08/21)

The formation of N-nitroso-ciprofloxacin (CIP) was investigated both in wastewater treatment plants including nitrification/denitrification stages and in sludge slurry experiments under denitrifying conditions. The analysis of biological wastewater treatment plant effluents by Kendrick mass defect analysis and liquid chromatography - high resolution - mass spectrometry (LC[sbnd]HRMS) revealed the occurrence of N-nitroso-CIP and N-nitroso-hydrochlorothiazide at concentration levels of 34 ± 3 ng/L and 71 ± 6 ng/L, respectively. In laboratory experiments and dark conditions, produced N-nitroso-CIP concentrations reached a plateau during the course of biodegradation experiments. A mass balance was achieved after identification and quantification of several transformation products by LC[sbnd]HRMS. N-nitroso-CIP accounted for 14.3% of the initial CIP concentration (20 μg/L) and accumulated against time. The use of 4,5-diaminofluorescein diacetate and superoxide dismutase as scavengers for in situ production of nitric oxide and superoxide radical anion respectively, revealed that the mechanisms of formation of N-nitroso-CIP likely involved a nitrosation pathway through the formation of peroxynitrite and another one through codenitrification processes, even though the former one appeared to be prevalent. This work extended the possible sources of N-nitrosamines by including a formation pathway relying on nitric oxide reactivity with secondary amines under activated sludge treatment.

Photochemistry of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3- carboxylic acid (=ciprofloxacin) in aqueous solutions

Mella, Mariella,Fasani, Elisa,Albini, Angelo

, p. 2508 - 2519 (2007/10/03)

The 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(piperazin-1-yl)quinoline-3- carboxylic acid (=ciprofloxacin; 1) undergoes low-efficiency (φ=0.07) substitution of the 6-fluoro by an OH group on irradiation in H2O via the ππ* triplet (detected by

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 105674-91-7