105903-05-7Relevant articles and documents
Copper-Catalyzed Diaryl Ether Formation from (Hetero)aryl Halides at Low Catalytic Loadings
Zhai, Yuntong,Chen, Xiaofei,Zhou, Wei,Fan, Mengyang,Lai, Yisheng,Ma, Dawei
, p. 4964 - 4969 (2017)
Diaryl formation is achieved by coupling phenols and (hetero)aryl halides under the catalysis of CuI/N,N′-bis(2-phenylphenyl) oxalamide (BPPO) or CuI/N-(2-phenylphenyl)-N′-benzyl oxalamide (PPBO) at 90 °C using DMF or MeCN as the solvent. Only 0.2-2 mol % CuI and ligand are required for complete conversion, which represents the lowest catalytic loadings for a general Cu/ligand-catalyzed diaryl ether formation.
CuI/oxalamide catalyzed couplings of (hetero)aryl chlorides and phenols for diaryl ether formation
Fan, Mengyang,Zhou, Wei,Jiang, Yongwen,Ma, Dawei
supporting information, p. 6211 - 6215 (2016/05/24)
Couplings between (hetero)aryl chlorides and phenols can be effectively promoted by CuI in combination with an N-aryl-N′-alkyl-substituted oxalamide ligand to proceed smoothly at 120 °C. For this process, N-aryl-N′-alkyl-substituted oxalamides are more effective ligands than bis(N-aryl)-substituted oxalamides. A wide range of electron-rich and electron-poor aryl and heteroaryl chlorides gave the corresponding coupling products in good yields. Satisfactory conversions were achieved with electron-rich phenols as well as a limited range of electron-poor phenols. Catalyst and ligand loadings as low as 1.5 mol % are sufficient for the scaled-up variants of some of these reactions. Aryl and alkyl: N-Aryl-N′-alkyl-substituted oxalamide ligands promote the CuI catalyzed coupling of (hetero)aryl chlorides and phenols at 120 °C more effectively than bis(N-aryl)-substituted oxalamides. A wide range of electron-rich and electron-poor aryl and heteroaryl chlorides were converted into the corresponding coupling products in good yields.
Orthogonal Cu- and Pd-based catalyst systems for the O- and N-arylation of aminophenols
Maiti, Debabrata,Buchwald, Stephen L.
supporting information; experimental part, p. 17423 - 17429 (2010/03/25)
O- or N-arylated aminophenol products constitute a common structural motif in various potentially useful therapeutic agents and/or drug candidates. We have developed a complementary set of Cu- and Pd-based catalyst systems for the selective O- and N-arylation of unprotected aminophenols using aryl halides. Selective O-arylation of 3- and 4-aminophenols is achieved with copper-catalyzed methods employing picolinic acid or CyDMEDA, trans-N,N′-dimethyl-1,2- cyclohexanediamine, respectively, as the ligand. The selective formation of N-arylated products of 3- and 4-aminophenols can be obtained with BrettPhos precatalyst, a biarylmonophosphine-based palladium catalyst. 2-Aminophenol can be selectively N-arylated with CuI, although no system for the selective O-arylation could be found. Coupling partners with diverse electronic properties and a variety of functional groups can be selectively transformed under these conditions.