Welcome to LookChem.com Sign In|Join Free

CAS

  • or

110590-84-6

Post Buying Request

110590-84-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

110590-84-6 Usage

General Description

N,N'-Bis(1-hexylheptyl)-perylene-3,4:9,10-bis-(dicarboximide) is a chemical compound commonly used as a pigment in various industries. It is a member of the perylene diimide family and is known for its high thermal stability and strong absorption properties. This chemical is often used as a colorant in plastics, inks, and coatings due to its excellent light and weather fastness. In addition, it is also used in organic photovoltaic devices and as a colorant in leather and textile dyes. Overall, N,N'-Bis(1-hexylheptyl)-perylene-3,4:9,10-bis-(dicarboximide) is a versatile and useful chemical in the manufacturing of various products.

Check Digit Verification of cas no

The CAS Registry Mumber 110590-84-6 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,1,0,5,9 and 0 respectively; the second part has 2 digits, 8 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 110590-84:
(8*1)+(7*1)+(6*0)+(5*5)+(4*9)+(3*0)+(2*8)+(1*4)=96
96 % 10 = 6
So 110590-84-6 is a valid CAS Registry Number.

110590-84-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name 2,9-bis-(1-hexylheptyl)anthra[2,1,9-def ,6,5,10-d'e'f']diisoquinoline-1,3,8,10-tetraone

1.2 Other means of identification

Product number -
Other names 2,9-bis-(1-hexylheptyl)anthra[2,1,9-def,6,5,10-d'e'f']diisoquinoline-1,3,8,10-tetraone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:110590-84-6 SDS

110590-84-6Synthetic route

1-hexylheptylamine
22513-16-2

1-hexylheptylamine

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride
128-69-8

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Conditions
ConditionsYield
With 1H-imidazole at 180℃; for 5h;100%
With 1H-imidazole In dichloromethane at 150℃; for 5h;100%
With 1H-imidazole; zinc diacetate at 155℃; for 4h;99%
1H-imidazole
288-32-4

1H-imidazole

1-hexylheptylamine
22513-16-2

1-hexylheptylamine

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride
128-69-8

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride

A

9-(1-hexylheptyl)-2-[1-hexyl-2-(1H-imidazol-1-yl)heptyl]anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10-tetrone

9-(1-hexylheptyl)-2-[1-hexyl-2-(1H-imidazol-1-yl)heptyl]anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10-tetrone

B

2,9-bis[1-hexyl-2-(1H-imidazol-1-yl)heptyl]anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10-tetrone

2,9-bis[1-hexyl-2-(1H-imidazol-1-yl)heptyl]anthra[2,1,9-def:6,5,10-d'e'f']diisoquinoline-1,3,8,10-tetrone

C

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Conditions
ConditionsYield
at 160℃; for 4h;A 0.7%
B 0.07%
C 82%
C40H43NO6

C40H43NO6

propyl bromide
106-94-5

propyl bromide

A

N-(1-hexylheptyl)-9,10-bis(propyloxycarbonyl)perylene-3,4-dicarboximide
1274451-95-4

N-(1-hexylheptyl)-9,10-bis(propyloxycarbonyl)perylene-3,4-dicarboximide

B

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Conditions
ConditionsYield
In N,N-dimethyl-formamide at 25℃; for 16h;A 58%
B 15%
1-hexylheptylamine
22513-16-2

1-hexylheptylamine

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride
128-69-8

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride

A

PERYLENE
198-55-0

PERYLENE

B

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

C

2-(1-hexylheptyl)-1H-benzo-[5,10]anthra[2,1,9-def ]isoquinolin-1,3(2H)-dione
165261-27-8

2-(1-hexylheptyl)-1H-benzo-[5,10]anthra[2,1,9-def ]isoquinolin-1,3(2H)-dione

Conditions
ConditionsYield
With 1H-imidazole; zinc diacetate; water at 190℃; for 24h;A n/a
B 15%
C 27%
tridecan-7-one
462-18-0

tridecan-7-one

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: 90 percent / NH4OAc; NaBH3CN / methanol / 48 h / 20 °C
2: imidazole / 5 h / 180 °C
View Scheme
Multi-step reaction with 2 steps
1: ammonium acetate; sodium cyanoborohydride / methanol / 56 h / 20 °C
2: 1H-imidazole / 3 h / 130 °C
View Scheme
Multi-step reaction with 2 steps
1: ammonium acetate; sodium cyanoborohydride / methanol / 60 h / 20 °C
2: 1H-imidazole / 4 h / 160 °C
View Scheme
tridecan-7-one oxime
26077-63-4

tridecan-7-one oxime

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1: sodium-dihydrobis(2-methoxyethoxy)aluminate / toluene / 4 h / 140 °C
2: 41 percent / imidazole / 4 h / 160 °C
View Scheme
Multi-step reaction with 2 steps
1: lithium aluminium tetrahydride / tetrahydrofuran
2: 1H-imidazole / 150 °C
View Scheme
1-hexylheptylamine
22513-16-2

1-hexylheptylamine

4-(5,5-dimethyl-1,3-dioxan-2-yl)benzylamine
138536-82-0

4-(5,5-dimethyl-1,3-dioxan-2-yl)benzylamine

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride
128-69-8

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride

A

C50H52N2O6

C50H52N2O6

B

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Conditions
ConditionsYield
With 1H-imidazole at 160℃; for 24h;
1-hexylheptylamine
22513-16-2

1-hexylheptylamine

A

N-(1-hexylheptyl)-9,10-bis(propyloxycarbonyl)perylene-3,4-dicarboximide
1274451-95-4

N-(1-hexylheptyl)-9,10-bis(propyloxycarbonyl)perylene-3,4-dicarboximide

B

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1.1: 1,8-diazabicyclo[5.4.0]undec-7-ene / N,N-dimethyl-formamide / 16 h / 25 °C
1.2: 72 h / 25 °C
2.1: N,N-dimethyl-formamide / 16 h / 25 °C
View Scheme
perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride
128-69-8

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride

A

N-(1-hexylheptyl)-9,10-bis(propyloxycarbonyl)perylene-3,4-dicarboximide
1274451-95-4

N-(1-hexylheptyl)-9,10-bis(propyloxycarbonyl)perylene-3,4-dicarboximide

B

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Conditions
ConditionsYield
Multi-step reaction with 2 steps
1.1: 1,8-diazabicyclo[5.4.0]undec-7-ene / N,N-dimethyl-formamide / 16 h / 25 °C
1.2: 72 h / 25 °C
2.1: N,N-dimethyl-formamide / 16 h / 25 °C
View Scheme
tridecan-7-one
462-18-0

tridecan-7-one

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride
128-69-8

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Conditions
ConditionsYield
Stage #1: tridecan-7-one With ammonium acetate; sodium cyanoborohydride In methanol at 20℃; for 48h; Inert atmosphere;
Stage #2: perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride With 1H-imidazole at 130℃; for 3h; Inert atmosphere;
8.57 g
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

N,N’-di-(1-hexylheptyl)-1-nitroperylene-3,4,9,10-tetracarboxydianhydride
259880-11-0

N,N’-di-(1-hexylheptyl)-1-nitroperylene-3,4,9,10-tetracarboxydianhydride

Conditions
ConditionsYield
With nitric acid In dichloromethane at 20℃;96%
With methanesulfonic acid; dinitrogen tetraoxide In dichloromethane at 20℃; for 7h; Substitution;93%
styrene
292638-84-7

styrene

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

C82H86N2O4

C82H86N2O4

Conditions
ConditionsYield
With silver hexafluoroantimonate; [RhCl2(p-cymene)]2; copper(II) acetate monohydrate; Trimethylacetic acid In 1,2-dichloro-ethane at 20 - 120℃; for 96h; Reagent/catalyst; Time; Schlenk technique; stereoselective reaction;96%
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

(5-bromo-2,9-bis(1-hexylheptyl)anthra[2,1,9-def:6,5,10-d'e'f']diiso-quinoline-1,3,8,10(2H,9H)-tetrone)

(5-bromo-2,9-bis(1-hexylheptyl)anthra[2,1,9-def:6,5,10-d'e'f']diiso-quinoline-1,3,8,10(2H,9H)-tetrone)

Conditions
ConditionsYield
With bromine; potassium carbonate In chlorobenzene at 60℃; for 24h; Bromination;86%
With bromine at 20℃; for 96h;65%
With bromine In dichloromethane at 20℃; for 48h;45%
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

Ethenesulfinic acid phenyl ester

Ethenesulfinic acid phenyl ester

C82H86N2O12S4

C82H86N2O12S4

Conditions
ConditionsYield
With silver hexafluoroantimonate; (p-cymene)ruthenium(II) chloride; copper(II) acetate monohydrate; acetic acid In 1,2-dichloro-ethane at 20 - 120℃; for 96h; Schlenk technique; stereoselective reaction;82%
tetrabutylammomium bromide
1643-19-2

tetrabutylammomium bromide

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

2,9‑bis(1‑hexylheptyl)anthra[2,1,9‑def;6,5,10‑d′e′f′]diisoquinoline‑1,3,8,10‑tetraone radical anion tetrabutylammonium salt

2,9‑bis(1‑hexylheptyl)anthra[2,1,9‑def;6,5,10‑d′e′f′]diisoquinoline‑1,3,8,10‑tetraone radical anion tetrabutylammonium salt

Conditions
ConditionsYield
Stage #1: N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide With hydroxy-2-propanone; sodium hydroxide In ethanol; water at 50 - 55℃; for 0.166667h; Inert atmosphere;
Stage #2: tetrabutylammomium bromide In ethanol; water Inert atmosphere;
82%
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

bis(pinacol)diborane
73183-34-3

bis(pinacol)diborane

N,N'-bis(1-hexylheptyl)-2,5,8,11-tetra(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)perylene-3,4:9,10-tetracarboxylic acid bisimide
1294450-31-9

N,N'-bis(1-hexylheptyl)-2,5,8,11-tetra(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)perylene-3,4:9,10-tetracarboxylic acid bisimide

Conditions
ConditionsYield
With (1,5-cyclooctadiene)(methoxy)iridium(I) dimer; tris(pentafluorophenyl)phosphine In 1,4-dioxane at 110℃; for 48h; Inert atmosphere; regioselective reaction;78%
acrylic acid n-butyl ester
141-32-2

acrylic acid n-butyl ester

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

C78H102N2O12

C78H102N2O12

Conditions
ConditionsYield
With silver hexafluoroantimonate; (p-cymene)ruthenium(II) chloride; copper(II) acetate monohydrate; acetic acid In 1,2-dichloro-ethane at 20 - 120℃; for 96h; Schlenk technique; stereoselective reaction;78%
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

acrylic acid methyl ester
292638-85-8

acrylic acid methyl ester

C66H78N2O12

C66H78N2O12

Conditions
ConditionsYield
With silver hexafluoroantimonate; (p-cymene)ruthenium(II) chloride; copper(II) acetate monohydrate; acetic acid In 1,2-dichloro-ethane at 20 - 120℃; for 96h; Solvent; Reagent/catalyst; Schlenk technique; stereoselective reaction;77%
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

N-(1-hexylheptyl)-perylene-3,4,9,10-tetracarboxylic-3,4-carboximide-9,10-anhydride
130296-37-6

N-(1-hexylheptyl)-perylene-3,4,9,10-tetracarboxylic-3,4-carboximide-9,10-anhydride

Conditions
ConditionsYield
Stage #1: N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide With potassium tert-butylate; water In tert-butyl alcohol for 2h; Reflux;
Stage #2: With hydrogenchloride In water; acetic acid; tert-butyl alcohol at 20℃;
76%
With potassium hydroxide In tert-butyl alcohol for 0.333333h; Heating;59%
With potassium hydroxide In tert-butyl alcohol at 90℃; for 0.5h;46%
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

butan-1-ol
71-36-3

butan-1-ol

A

N,N'-di(1'-hexylheptyl)-1-butoxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1-butoxy-3,4:9,10-perylenetetracarboxydiimide

B

N,N'-di(1'-hexylheptyl)-1,6-dibutoxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1,6-dibutoxy-3,4:9,10-perylenetetracarboxydiimide

C

N,N'-di(1'-hexylheptyl)-1,7-dibutoxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1,7-dibutoxy-3,4:9,10-perylenetetracarboxydiimide

Conditions
ConditionsYield
With tetrabutyl ammonium fluoride In tetrahydrofuran at 70℃; for 24h; Reagent/catalyst; Solvent; Temperature; Inert atmosphere;A 75%
B 72 %Spectr.
C 28 %Spectr.
With tetrabutyl ammonium fluoride In tetrahydrofuran at 70℃; for 24h; Inert atmosphere;A 6%
B 72 %Spectr.
C 28%Spectr.
maleic anhydride
108-31-6

maleic anhydride

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

2,10-bis(1-hexylheptyl)furo[3′,4′:4,5]pyreno-[2,1,10-def:7,8,9-d′e′f ′]diisoquinoline-1,3,5,7,9,11(2H,10H)-hexone
259880-39-2

2,10-bis(1-hexylheptyl)furo[3′,4′:4,5]pyreno-[2,1,10-def:7,8,9-d′e′f ′]diisoquinoline-1,3,5,7,9,11(2H,10H)-hexone

Conditions
ConditionsYield
With chloranil In acetone at 125℃; for 96h; Aromatisation; Diels-Alder reaction;71%
Hexanethiol
111-31-9

Hexanethiol

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

N,N'-di-(1'-hexylheptyl)-1,6-dihexylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl)-1,6-dihexylthioperylene-3,4:9,10-tetracarboxydiimide

B

N,N'-di-(1'-hexylheptyl)-1,7-dihexylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl)-1,7-dihexylthioperylene-3,4:9,10-tetracarboxydiimide

C

N,N'-di-(1'-hexylheptyl )-1-hexylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl )-1-hexylthioperylene-3,4:9,10-tetracarboxydiimide

Conditions
ConditionsYield
With potassium fluoride; 18-crown-6 ether In tetrahydrofuran at 70℃; for 24h; Reagent/catalyst; Inert atmosphere;A 66%
B n/a
C 15%
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

ethyl acrylate
140-88-5

ethyl acrylate

C70H86N2O12

C70H86N2O12

Conditions
ConditionsYield
With silver hexafluoroantimonate; (p-cymene)ruthenium(II) chloride; copper(II) acetate monohydrate; acetic acid In 1,2-dichloro-ethane at 20 - 120℃; for 96h; Schlenk technique; stereoselective reaction;65%
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

N-(1-hexylheptyl)-perylene-3,4,9,10-tetracarboxylic-3,4-carboximide-9,10-anhydride
130296-37-6

N-(1-hexylheptyl)-perylene-3,4,9,10-tetracarboxylic-3,4-carboximide-9,10-anhydride

B

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride
128-69-8

perylene-3,4,9,10-tetracarboxylic acid 3,4:9,10-dianhydride

Conditions
ConditionsYield
With potassium hydroxide In tert-butyl alcohol for 0.166667h; Heating;A 63%
B n/a
With potassium hydroxide In tert-butyl alcohol Heating;A 40%
B n/a
1-Decanol
112-30-1

1-Decanol

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

N,N'-di(1'-hexylheptyl)-1-decyloxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1-decyloxy-3,4:9,10-perylenetetracarboxydiimide

B

N,N'-di(1'-hexylheptyl)-1,6-didecyloxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1,6-didecyloxy-3,4:9,10-perylenetetracarboxydiimide

C

N,N'-di(1'-hexylheptyl)-1,7-didecyloxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1,7-didecyloxy-3,4:9,10-perylenetetracarboxydiimide

Conditions
ConditionsYield
With tetrabutyl ammonium fluoride In tetrahydrofuran at 70℃; for 24h; Inert atmosphere;A 62%
B 74%Spectr.
C 26%Spectr.
piperidine
110-89-4

piperidine

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

C55H71N3O4
1609084-88-9

C55H71N3O4

B

C60H80N4O4
1609084-66-3

C60H80N4O4

Conditions
ConditionsYield
With copper dichloride at 60℃; for 24h;A 60%
B 28%
1-Decanol
112-30-1

1-Decanol

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

N,N'-di(1'-hexylheptyl)-1-decyloxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1-decyloxy-3,4:9,10-perylenetetracarboxydiimide

Conditions
ConditionsYield
With tetrabutyl ammonium fluoride In tetrahydrofuran at 70℃; for 24h; Inert atmosphere;60%
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

C50H60Br2N2O4
1174418-73-5

C50H60Br2N2O4

B

N,N’-di(1’-hexylheptyl)-1,7(6)-dibromo-3,4:9,10-perylenetetracarboxydiimide
1174418-72-4

N,N’-di(1’-hexylheptyl)-1,7(6)-dibromo-3,4:9,10-perylenetetracarboxydiimide

C

(5-bromo-2,9-bis(1-hexylheptyl)anthra[2,1,9-def:6,5,10-d'e'f']diiso-quinoline-1,3,8,10(2H,9H)-tetrone)

(5-bromo-2,9-bis(1-hexylheptyl)anthra[2,1,9-def:6,5,10-d'e'f']diiso-quinoline-1,3,8,10(2H,9H)-tetrone)

Conditions
ConditionsYield
With bromine In dichloromethane at 20℃; for 96h;A n/a
B n/a
C 57%
With bromine In chloroform at 20℃; for 64h;A n/a
B n/a
C 51%
pyrrolidine
123-75-1

pyrrolidine

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

N,N′-bis(1-hexylheptyl)-2-(N-pyrrolidinyl)perylene-3,4:9,10-tetracarboxybisimide

N,N′-bis(1-hexylheptyl)-2-(N-pyrrolidinyl)perylene-3,4:9,10-tetracarboxybisimide

B

N,N′-bis(1-hexylheptyl)-2,11-bis(N-pyrrolidinyl)perylene-3,4:9,10-tetracarboxylic bisimide

N,N′-bis(1-hexylheptyl)-2,11-bis(N-pyrrolidinyl)perylene-3,4:9,10-tetracarboxylic bisimide

Conditions
ConditionsYield
at 23℃; for 216h;A 53%
B 2%
Octanethiol
111-88-6

Octanethiol

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

N,N'-di-(1'-hexylheptyl)-1,6-dioctylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl)-1,6-dioctylthioperylene-3,4:9,10-tetracarboxydiimide

B

N,N'-di-(1'-hexylheptyl)-1,7-dioctylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl)-1,7-dioctylthioperylene-3,4:9,10-tetracarboxydiimide

C

N,N'-di-(1'-hexylheptyl )-1-octylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl )-1-octylthioperylene-3,4:9,10-tetracarboxydiimide

Conditions
ConditionsYield
With potassium fluoride; 18-crown-6 ether In tetrahydrofuran at 70℃; for 24h; Inert atmosphere;A 53%
B n/a
C 20%
decylthiol
143-10-2

decylthiol

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

N,N'-di-(1'-hexylheptyl )-1-decylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl )-1-decylthioperylene-3,4:9,10-tetracarboxydiimide

B

N,N'-di-(1'-hexylheptyl)-1,6-didecylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl)-1,6-didecylthioperylene-3,4:9,10-tetracarboxydiimide

C

N,N'-di-(1'-hexylheptyl)-1,7-didecylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl)-1,7-didecylthioperylene-3,4:9,10-tetracarboxydiimide

Conditions
ConditionsYield
With potassium fluoride; 18-crown-6 ether In tetrahydrofuran at 70℃; for 24h; Inert atmosphere;A 25%
B 53%
C n/a
pyrrolidine
123-75-1

pyrrolidine

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

C58H76N4O4
1609084-61-8

C58H76N4O4

Conditions
ConditionsYield
With copper diacetate at 95℃; for 24h; Reagent/catalyst; Temperature;52%
1-methyl-1-propanethiol
513-53-1

1-methyl-1-propanethiol

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

N,N'-di-(1'-hexylheptyl)-1-s-butylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl)-1-s-butylthioperylene-3,4:9,10-tetracarboxydiimide

B

N,N′-di-(1′-hexylheptyl)-1,6-di-s-butylthioperylene-3,4:9,10-tetracarboxydiimide

N,N′-di-(1′-hexylheptyl)-1,6-di-s-butylthioperylene-3,4:9,10-tetracarboxydiimide

C

N,N′-di-(1′-hexylheptyl)-1,7-di-s-butylthioperylene-3,4:9,10-tetracarboxydiimide

N,N′-di-(1′-hexylheptyl)-1,7-di-s-butylthioperylene-3,4:9,10-tetracarboxydiimide

Conditions
ConditionsYield
With potassium fluoride; 18-crown-6 ether In tetrahydrofuran at 70℃; for 72h; Inert atmosphere;A 50%
B n/a
C n/a
2-methyl-propan-1-ol
78-83-1

2-methyl-propan-1-ol

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

N,N'-di(1'-hexylheptyl)-1-(i-butoxy)-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1-(i-butoxy)-3,4:9,10-perylenetetracarboxydiimide

B

N,N'-di(1'-hexylheptyl)-1,6-di-i-butoxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1,6-di-i-butoxy-3,4:9,10-perylenetetracarboxydiimide

C

N,N'-di(1'-hexylheptyl)-1,7-di-i-butoxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1,7-di-i-butoxy-3,4:9,10-perylenetetracarboxydiimide

Conditions
ConditionsYield
With tetrabutyl ammonium fluoride In tetrahydrofuran at 70℃; for 24h; Inert atmosphere;A 46%
B 73 %Spectr.
C 27 %Spectr.
2-phenylethanol
60-12-8

2-phenylethanol

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

A

N,N'-di(1'-hexylheptyl)-1-phenetoxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1-phenetoxy-3,4:9,10-perylenetetracarboxydiimide

B

N,N'-di(1'-hexylheptyl)-1,6-diphenetoxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1,6-diphenetoxy-3,4:9,10-perylenetetracarboxydiimide

C

N,N'-di(1'-hexylheptyl)-1,7-diphenetoxy-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1,7-diphenetoxy-3,4:9,10-perylenetetracarboxydiimide

Conditions
ConditionsYield
With tetrabutyl ammonium fluoride In tetrahydrofuran at 70℃; for 72h; Inert atmosphere;A 44%
B 70 %Spectr.
C 30 %Spectr.
With tetrabutyl ammonium fluoride In tetrahydrofuran at 70℃; for 24h; Inert atmosphere;A 23%
B 72%Spectr.
C 28%Spectr.
N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

ethylene glycol
107-21-1

ethylene glycol

N,N'-di(1'-hexylheptyl)-1-(2'-hydroxyethoxy)-3,4:9,10-perylenetetracarboxydiimide

N,N'-di(1'-hexylheptyl)-1-(2'-hydroxyethoxy)-3,4:9,10-perylenetetracarboxydiimide

Conditions
ConditionsYield
With tetrabutyl ammonium fluoride In tetrahydrofuran at 70℃; for 72h; Inert atmosphere;43%
Octanethiol
111-88-6

Octanethiol

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide
110590-84-6

N-(1-hexylheptyl)perylene-3,4,9,10-tetracarboxylic-3,4-anhydride-9,10-imide

N,N'-di-(1'-hexylheptyl )-1-octylthioperylene-3,4:9,10-tetracarboxydiimide

N,N'-di-(1'-hexylheptyl )-1-octylthioperylene-3,4:9,10-tetracarboxydiimide

Conditions
ConditionsYield
With potassium fluoride; 18-crown-6 ether In tetrahydrofuran at 70℃; for 12h; Inert atmosphere;43%

110590-84-6Relevant articles and documents

Restricted diffusion of guest molecules in polymer thin films on solid substrates as revealed by three-dimensional single-molecule tracking

Ito, Syoji,Taga, Yuhei,Hiratsuka, Kengo,Takei, Satoshi,Kitagawa, Daichi,Kobatake, Seiya,Miyasaka, Hiroshi

, p. 13756 - 13759 (2015)

3D single-molecule tracking revealed that the translational diffusion of guest dyes in poly(2-hydroxyethyl acrylate) thin films on glass substrates was confined in a horizontal layer at a distance longer than 300-700 nm from the surface of the substrate. This peculiar long-range effect suggests that the interaction between the host polymer and the interface could affect the properties of polymers at a much longer distance than conventionally estimated.

Original Suzuki–Miyaura Coupling Using Nitro Derivatives for the Synthesis of Perylenediimide-Based Multimers

Rocard, Lou,Hatych, Danylo,Chartier, Thomas,Cauchy, Thomas,Hudhomme, Piétrick

, p. 7635 - 7643 (2019)

A series of perylenediimide (PDI)-based multimers were synthesized using an original Suzuki–Miyaura Coupling (SMC) reaction. The new approach considers the reaction between 1-nitroPDI as the electrophilic reagent with a wide variety of boronic esters to reach PDI dimers, trimers and tetramers which are of particular interest as Non-Fullerene Acceptors (NFAs) in organic photovoltaics. In this work, we compared the reactivity of 1-bromoPDI and 1-nitroPDI towards this pallado-catalyzed cross-coupling reaction. Considering that 1-nitroPDI is more accessible in terms of selectivity, time reaction, purification efficiency, atom economy, etc, we have shown that the use of nitroarenes is largely favored in the preparation of these PDI-based multimers. The latter were characterized with determination of their spectroscopic and electrochemical properties. With the aim of extending this SMC reaction to N-annulated PDI analogues, an original and efficient transformation of nitro-PDI into pyrrole-fused PDI was found as an alternative to the well-known reductive Cadogan cyclization. The SMC reaction was applied to bromo and nitro N-annulated PDI derivatives, and DFT calculations were accomplished in order to clarify the oxidative addition step of the cross-coupling and understand the difference of reactivity between the bromo- and nitro-PDI based electrophiles.

Self-organized perylene diimide nanofibers

Yan, Ping,Chowdhury, Arindam,Holman, Michael W.,Adams, David M.

, p. 724 - 730 (2005)

A propeller-shaped perylene diimide trimer was synthesized and a simple evaporation method was used for the self-organization of trimer molecules into fluorescent nanofibers. The sizes of these fibers-from 4 to 150 nm in diameter - were measured by atomic force microscopy and can be controlled by adjusting the concentration of the initial solution. The aspect ratios (length/height) are around 500. The plane of the trimer was determined by polarized scanning confocal microscopy to be perpendicular to the axis of the fibers, in agreement with molecular mechanics calculations. UV/vis and NMR spectroscopies were used to monitor concentration-dependent π-π stacking in solution. Single-fiber fluorescence imaging and spectroscopy were performed using a total internal reflection fluorescence microscope equipped with a digital color camera and imaging CCD spectrometer. Strongly red-shifted fluorescence from these fibers indicates a high degree of electronic delocalization, and breaking up this delocalization by photobleaching blue-shifts the emission toward that of an isolated noninteracting molecule. The delocalization along these nanofibers and the ability to study the electronic structure using fluorescence make them potentially useful in nanoscale devices, such as field effect transistors and photoconductors.

Solvents Effects on Film Morphologies and Memory Behavior of a Perylenediimide-Containing Pendent Polymer

Wang, Ming,Zhang, Qi-jian,Li, Zhuang,Li, Hua,Lu, Jian-Mei

, p. 1784 - 1790 (2018)

The large polydispersity index of functional pendant polymers has hindered their application in semiconductors. Herein, a novel pendant polymer with perylenediimide (PDI) in the side chains was successfully synthesized through ring-opening metathesis poly

PDI-based heteroacenes as acceptors for fullerene-free solar cells: Importance of their twisted geometry

Chen, Huaqing,Wang, Ling,Sun, Hua,Liu, Qian,Tan, Xiao,Sang, Shenglong,Wu, Bo,Zhang, Cong,Chen, Fei,Hang, Xiao-Chun,Chen, Zhi-Kuan

, p. 13093 - 13099 (2020)

Two perylenediimide (PDI) derivatives (FP4TT2T and FP43T) with extended conjugation have been successfully synthesized. Due to their long fused D-A (D: donor and A: acceptor) molecular structures, PDI-based heteroacenes have rigid backbones and exhibit strong light absorption in the 300-600 nm range. With the contribution from the PDI moiety with strong electron affinity, the molecules possess low energy levels of LUMOs (ca. -3.7 eV), fitting well as acceptors for fullerene-free organic solar cells (OSCs). OSC devices containing FP4TT2T and FP43T were fabricated and fully characterized. It is found that the geometric twist in PDI-based heteroacenes as acceptors could enhance the performance of OSC devices. OSCs based on FP43T with a more twisted geometry achieved a power conversion efficiency of 6.05%, which is higher than those based on the FP4TT2T counterpart.

New perylenebisimide decorated cyclotriphosphazene heavy atom free conjugate as singlet oxygen generator

Okutan, Elif,Eserci, Hande,?enkuytu, Elif

, (2019)

Perylenebisimide-cyclotriphosphazene based inorganic-organic system was synthesized by a multistep procedure. The substitution reaction of asymmetric perylenebisimide (PBI) derivative with the hexachloroyclotriphosphazene (trimer) resulted in the formation of fully PBI decorated cyclotriphosphazene (5). The identity of newly synthesized compound (5) was confirmed by using 31P, 1H and 13C NMR spectroscopies and mass spectrometry. The photophysical (UV- Vis absorption, fluorescence emission, fluorescence lifetime and fluorescence quantum yield) and photochemical (the singlet oxygen generation, and photostability) properties of this conjugate were investigated as novel heavy atom free triplet photosensitizer. The singlet oxygen quantum yield of the PBI-cyclotriphosphazene (5) was calculated to be 0.86 which is good for a heavy atom free triplet photosensitizer. These results will add to the development of cyclotriphosphazene based heavy atom free singlet oxygen triplet photosensitizer systems for applications in organic oxygenation reactions.

An unusual β-oxidation of N-functionalized alkyl chains by 1H-imidazole

Langhals, Heinz,Gold, Josef

, p. 2832 - 2836 (2005)

The 1H-imidazole-mediated condensation of primary aliphatic amines with perylene-3,4: 9,10-tetracarboxylic bis-anhydride resulted in by-products where the aliphatic group was functionalized in the β-position by imidazole units.

Supramolecular Nanopatterns of Molecular Spoked Wheels with Orthogonal Pillars: The Observation of a Fullerene Haze

Grimme, Stefan,H?ger, Sigurd,Jester, Stefan-S.,Jochemich, Anna,Keller, Tristan J.,Kr?nert, Anna,Müller, Ute,Poluektov, Georgiy,Spicher, Sebastian

supporting information, p. 27264 - 27270 (2021/11/30)

Molecular spoked wheels with intraannular functionalizable pillars are synthesized in a modular approach. The functionalities at their ends are variable, and a propargyl alcohol, a [6,6]-phenyl-C61-butyrate, and a perylene monoimide are investigated. All compounds form two-dimensional crystals on highly oriented pyrolytic graphite at the solid–liquid interface. As determined by submolecularly resolved scanning tunneling microscopy, the pillars adopt equilibrium distances of 6.0 nm. The fullerene has a residual mobility, limited by the length of the flexible connector unit. The experimental results are supported and rationalized by molecular dynamics simulations. These also show that, in contrast, the more rigidly attached perylene monoimide units remain oriented along the surface normal and maintain a smallest distance of 2 nm above the graphite substrate. The robust packing concept also holds for cocrystals with molecular hexagons that expand the pillar–pillar distances by 15 % and block unspecific intercalation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 110590-84-6