Welcome to LookChem.com Sign In|Join Free

CAS

  • or

112966-26-4

Post Buying Request

112966-26-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

112966-26-4 Usage

General Description

"(R)-(4-Chlorophenyl)(pyridin-2-yl)methanol" is a synthetic chemical compound. Its structure consists of R-configuration alcohol functional group bonded to a carbon atom that is further bonded to a pyridine-2-yl ring and a p-chlorophenyl ring, thus earning its name. It is a chiral compound due to the presence of a stereocenter in its structure, meaning it has a non-superimposable mirror image. The exact physical characteristics, uses, and safety information about this substance are not commonly documented, as such specific chemicals are often used in specialized or small-scale laboratory applications. Therefore, a detailed understanding of this compound likely resides within specific scientific research or industrial practice.

Check Digit Verification of cas no

The CAS Registry Mumber 112966-26-4 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,1,2,9,6 and 6 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 112966-26:
(8*1)+(7*1)+(6*2)+(5*9)+(4*6)+(3*6)+(2*2)+(1*6)=124
124 % 10 = 4
So 112966-26-4 is a valid CAS Registry Number.
InChI:InChI=1/C12H10ClNO/c13-10-6-4-9(5-7-10)12(15)11-3-1-2-8-14-11/h1-8,12,15H/t12-/m1/s1

112966-26-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name (R)-(4-Chlorophenyl)(pyridin-2-yl)methanol

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:112966-26-4 SDS

112966-26-4Relevant articles and documents

Preparation, Absolute Configuration and Conformation of Some α-Aryl-2-pyridylmethanols

Bojadziev, Stefan E.,Tsankov, Dimiter T.,Ivanov, Petko M.,Berova, Nikolina D.

, p. 2651 - 2656 (1987)

The syntheses of five optically active α-aryl-2-pyridylmethanols 1-5 are described.It is shown by means of chemical correlation with the known (-)-(α-R,2S)-α-phenyl-2-piperidylmethanol 6 that all levo-rotatory isomers 1-4 are of R configuration.It is also found via the relative integral intensities in the infrared spectra of the bands due to free and intramolecularly bonded hydroxyl groups in the compounds 1-4 and the free hydroxyl groups in the model compounds 7-10, that the population of the conformers with an intramolecular OH...N bond in compounds 1-4 exceds 80percent.

Effect of inhibitor or immobilization on reduction of benzoylpyridines by baker's yeast

Takemoto, Masumi,Yamamoto, Yuichi,Achiwa, Kazuo

, p. 853 - 855 (1996)

The stereochemical course of the reduction of benzolpyridine derivatives (1a-e) by baker's yeast can be modified by immobilization or by treating the reduction system with allyl alcohol or ethyl chloroacetate.

Amino alcohols using the optically active amino alcohol derivative bi- Nord complex boron - -

-

Paragraph 0064; 0071-0076; 0287-0288; 0291-0032, (2021/04/16)

Disclosed are an amino alcohol-boron-binol complex as an intermediate, including Complex 3-1-1 shown below, and a method for preparing an optically active amino alcohol by using the same, wherein a racemic amino alcohol is resolved in an enationselective manner using a boron compound and a (R)- or (S)-binol, whereby an amino alcohol derivative with high optical purity can be prepared at high yield.

Engineering an alcohol dehydrogenase with enhanced activity and stereoselectivity toward diaryl ketones: Reduction of steric hindrance and change of the stereocontrol element

Chen, Rong,Huang, Jiankun,Meng, Xiangguo,Shao, Lei,Wu, Kai,Yang, Zhijun

, p. 1650 - 1660 (2020/04/09)

Steric hindrance in the binding pocket of an alcohol dehydrogenase (ADH) has a great impact on its activity and stereoselectivity simultaneously. Due to the subtle structural difference between two bulky phenyl substituents, the asymmetric synthesis of diaryl alcohols by bioreduction of diaryl ketones is often hindered by the low activity and stereoselectivity of ADHs. To engineer an ADH with practical properties and to investigate the molecular mechanism behind the asymmetric biocatalysis of diaryl ketones, we engineered an ADH from Lactobacillus kefiri (LkADH) to asymmetrically catalyse the reduction of 4-chlorodiphenylketones (CPPK), which are not catalysed by the wild type (WT) enzyme. Mutants seq1-seq5 with gradually increased activity and stereoselectivity were obtained through iterative "shrinking mutagenesis." The final mutant seq5 (Y190P/I144V/L199V/E145C/M206F) demonstrated the highest activity and excellent stereoselectivity of >99% ee. Molecular simulation analyses revealed that mutations may enhance the activity by eliminating steric hindrance, inducing a more open binding loop and constructing more noncovalent interactions. The pro-R pose of CPPK with a halogen bond formed a pre-reaction conformation more easily than the pro-S pose, resulting in the high ee of (R)-CPPO in seq5. Moreover, different halogen bonds formed due to the different positions of chlorine substituents, resulting in opposite substrate binding orientation and stereoselectivity. Therefore, the stereoselectivity of seq5 was inverted toward ortho- rather than para-chlorine substituted ketones. These results indicate that the stereocontrol element of LkADH was changed to recognise diaryl ketones after steric hindrance was eliminated. This study provides novel insights into the role of steric hindrance and noncovalent bonds in the determination of the activity and stereoselectivity of enzymes, and presents an approach producing key intermediates of chiral drugs with practical potential.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 112966-26-4