1136827-09-2Relevant articles and documents
Diquat derivatives: Highly active, two-dimensional nonlinear optical chromophores with potential redox switchability
Coe, Benjamin J.,Fielden, John,Foxon, Simon P.,Harris, James A.,Helliwell, Madeleine,Brunschwig, Bruce S.,Asselberghs, Inge,Clays, Koen,Garin, Javier,Orduna, Jesus
, p. 10498 - 10512 (2010)
In this article, we present a detailed study of structure-activity relationships in diquaternized 2,2′-bipyridyl (diquat) derivatives. Sixteen new chromophores have been synthesized, with variations in the amino electron donor substituents, π-conjugated bridge, and alkyl diquaternizing unit. Our aim is to combine very large, two-dimensional (2D) quadratic nonlinear optical (NLO) responses with reversible redox chemistry. The chromophores have been characterized as their PF6- salts by using various techniques including electronic absorption spectroscopy and cyclic voltammetry. Their visible absorption spectra are dominated by intense π → π* intramolecular charge-transfer (ICT) bands, and all show two reversible diquat-based reductions. First hyperpolarizabilities β have been measured by using hyper-Rayleigh scattering with an 800 nm laser, and Stark spectroscopy of the ICT bands affords estimated static first hyperpolarizabilities β0. The directly and indirectly derived β values are large and increase with the extent of π-conjugation and electron donor strength. Extending the quaternizing alkyl linkage always increases the ICT energy and decreases the E1/2 values for diquat reduction, but a compensating increase in the ICT intensity prevents significant decreases in Stark-based β0 responses. Nine single-crystal X-ray structures have also been obtained. Time-dependent density functional theory clarifies the molecular electronic/optical properties, and finite field calculations agree with polarized HRS data in that the NLO responses of the disubstituted species are dominated by 'off-diagonal' βzyy components. The most significant findings of these studies are: (i) β0 values as much as 6 times that of the chromophore in the technologically important material (E)-4′-(dimethylamino)-N-methyl-4- stilbazolium tosylate; (ii) reversible electrochemistry that offers potential for redox-switching of optical properties over multiple states; (iii) strongly 2D NLO responses that may be exploited for novel practical applications; (iv) a new polar material, suitable for bulk NLO behavior.