Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1147-76-8

Post Buying Request

1147-76-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1147-76-8 Usage

Uses

5-(1,3-Dioxo-2,3-dihydro-1H-isoindol-2-yl)pentanoic Acid can be used as potential immunomodulating agents.

Check Digit Verification of cas no

The CAS Registry Mumber 1147-76-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,1,4 and 7 respectively; the second part has 2 digits, 7 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 1147-76:
(6*1)+(5*1)+(4*4)+(3*7)+(2*7)+(1*6)=68
68 % 10 = 8
So 1147-76-8 is a valid CAS Registry Number.

1147-76-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 5-(1,3-dioxoisoindol-2-yl)pentanoic acid

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1147-76-8 SDS

1147-76-8Relevant articles and documents

Synthesis and characterization of novel phosphonocarboxylate inhibitors of RGGT

Coxon, Fraser,Joachimiak, ?ukasz,Najumudeen, Arafath Kaja,Breen, George,Gmach, Joanna,Oetken-Lindholm, Christina,Way, Rebecca,Dunford, James,Abankwa, Daniel,B?azewska, Katarzyna M.

, p. 77 - 89 (2014)

Phosphonocarboxylate (PC) analogs of the anti-osteoporotic drugs, bisphosphonates, represent the first class of selective inhibitors of Rab geranylgeranyl transferase (RabGGTase, RGGT), an enzyme implicated in several diseases including ovarian, breast and skin cancer. Here we present the synthesis and biological characterization of an extended set of this class of compounds, including lipophilic derivatives of the known RGGT inhibitors. From this new panel of PCs, we have identified an inhibitor of RGGT that is of similar potency as the most active published phosphonocarboxylate, but of higher selectivity towards prenyl pyrophosphate synthases. New insights into structural requirements are also presented, showing that only PC analogs of the most potent 3rd generation bisphosphonates inhibit RGGT. In addition, the first phosphonocarboxylate-derived GGPPS weak inhibitor is reported.

-

Fujii et al.

, p. 354,357 (1971)

-

ω-Quinazolinonylalkyl aryl ureas as reversible inhibitors of monoacylglycerol lipase

Dato, Florian M.,Neud?rfl, J?rg-Martin,Gütschow, Michael,Goldfuss, Bernd,Pietsch, Markus

, (2020)

The serine hydrolase monoacylglycerol lipase (MAGL) is involved in a plethora of pathological conditions, in particular pain and inflammation, various types of cancer, metabolic, neurological and cardiovascular disorders, and is therefore a promising target for drug development. Although a large number of irreversible-acting MAGL inhibitors have been discovered over the past years, there are only few compounds known so far which inhibit the enzyme in a reversible manner. Therefore, much effort is put into the development of novel chemical entities showing reversible inhibitory behavior, which is thought to cause less undesired side effects. To explore a wide range of chemical structures as MAGL binders, we have applied a virtual screening approach by docking small molecules into the crystal structure of human MAGL (hMAGL) and envisaged a library of 45 selected compounds which were then synthesized. Biochemical investigations included the determination of the inhibitory potency on hMAGL and two related hydrolases, i.e. human fatty acid amide hydrolase (hFAAH) and murine cholesterol esterase (mCEase). The most promising candidates from theses analyses, i.e. three ω-quinazolinonylalkyl aryl ureas bearing alkyl spacers of three to five methylene groups, exhibited IC50 values of 20–41 μM and reversible, detergent-insensitive behavior towards hMAGL. Among these compounds, the inhibitor 1-(3,5-bis(trifluoromethyl)phenyl)-3-(4-(4-oxo-3,4-dihydroquinazolin-2-yl)butyl)urea (96) was selected for further kinetic characterization, yielding a dissociation constant Ki = 15.4 μM and a mixed-type inhibition with a pronounced competitive component (α = 8.94). This mode of inhibition was further supported by a docking experiment, which suggested that the inhibitor occupies the substrate binding pocket of hMAGL.

Oxidative damage of proline residues by nitrate radicals (NO3): A kinetic and product study

Nathanael, Joses G.,Nuske, Madison R.,Richter, Annika,White, Jonathan M.,Wille, Uta

, p. 6949 - 6957 (2020)

Tertiary amides, such as in N-acylated proline or N-methyl glycine residues, react rapidly with nitrate radicals (NO3) with absolute rate coefficients in the range of 4-7 × 108 M-1 s-1 in acetonitrile. The major pathway proceeds through oxidative electron transfer (ET) at nitrogen, whereas hydrogen abstraction is only a minor contributor under these conditions. However, steric hindrance at the amide, for example by alkyl side chains at the α-carbon, lowers the rate coefficient by up to 75%, indicating that NO3-induced oxidation of amide bonds proceeds through initial formation of a charge transfer complex. Furthermore, the rate of oxidative damage of proline and N-methyl glycine is significantly influenced by its position in a peptide. Thus, neighbouring peptide bonds, particularly in the N-direction, reduce the electron density at the tertiary amide, which slows down the rate of ET by up to one order of magnitude. The results from these model studies suggest that the susceptibility of proline residues in peptides to radical-induced oxidative damage should be considerably reduced, compared with the single amino acid.

HETEROCYCLIC COMPOUNDS AS PRMT5 INHIBITORS

-

Paragraph 082; 156; 191, (2020/12/11)

The present disclosure describes novel heterocyclic PRMT5 inhibitors and methods for preparing them. The pharmaceutical compositions comprising such PRMT5 inhibitors and methods of using them for treating cancer, infectious diseases, and other PRMT5 associated disorders are also described.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1147-76-8