Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1232006-36-8

Post Buying Request

1232006-36-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1232006-36-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 1232006-36-8 includes 10 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 7 digits, 1,2,3,2,0,0 and 6 respectively; the second part has 2 digits, 3 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 1232006-36:
(9*1)+(8*2)+(7*3)+(6*2)+(5*0)+(4*0)+(3*6)+(2*3)+(1*6)=88
88 % 10 = 8
So 1232006-36-8 is a valid CAS Registry Number.

1232006-36-8Relevant articles and documents

Nitrile Synthesis via Desulfonylative-Smiles Rearrangement

Abe, Masahiro,Nitta, Sayasa,Miura, Erina,Kimachi, Tetsutaro,Inamoto, Kiyofumi

, p. 4460 - 4467 (2022/03/15)

Herein, we designed a simple nitrile synthesis from N-[(2-nitrophenyl)sulfonyl]benzamides via base-promoted intramolecular nucleophilic aromatic substitution. The process features redox-neutral conditions as well as no requirement of toxic cyanide species and transition metals. Our process shows broad scope and various functional group compatibility, affording a variety of (hetero)aromatic nitriles in good to excellent yields.

Oxidation/ MCR domino protocol for direct transformation of methyl benzene, alcohol, and nitro compounds to the corresponding tetrazole using a three-functional redox catalytic system bearing TEMPO/Co(III)-porphyrin/ Ni(II) complex

Mahmoudi, Boshra,Rostami, Amin,Kazemnejadi, Milad,Hamah-Ameen, Baram Ahmed

, (2020/12/21)

A redox catalytic system for oxidation-reduction reactions and the domino preparation of tetrazole compounds from nitro and alcohol precursors was designed, prepared and characterized by UV–vis, GPC, TGA, XRD, EDX, XPS, VSM, FE-SEM, TEM, DLS, BET, NMR, and ICP analyses. The catalyst was prepared via several successive steps by demetalation of chlorophyll b, copolymerization with acrylated TEMPO monomers, complexation with Ni and Co metals (In two different steps), then immobilized on magnetic nanoparticles. The presence of three functional groups including TEMPO, coordinated cobalt, and coordinated nickel in the catalyst, allowed the oxidation of various types of alcohols, alkyl benzenes as well as the reduction of nitro compounds by a single catalyst. All reactions yielded up to 97 % selectivity for oxidation and reduction reactions. Next, the ability of the catalyst to successfully convert alcohol, methyl benzenes and nitro to their corresponding tetrazoles was studied.

Recyclable and Reusable Pd(OAc)2/XPhos–SO3Na/PEG-400/H2O System for Cyanation of Aryl Chlorides with Potassium Ferrocyanide

Cai, Mingzhong,Huang, Bin,Liu, Rong,Xu, Caifeng

, (2021/12/03)

Pd(OAc)2/XPhos–SO3Na in a mixture of poly(ethylene glycol) (PEG-400) and water is shown to be a highly efficient catalyst for the cyanation of aryl chlorides with potassium ferrocyanide. The reaction proceeded smoothly at 100 or 120?oC with K2CO3 or KOAc as base, delivering a variety of aromatic nitriles in good to excellent yields. The isolation of the crude products is facilely performed by extraction with cyclohexane and more importantly, both expensive Pd(OAc)2 and XPhos–SO3Na in PEG-400/H2O system could be easily recycled and reused at least six times without any apparent loss of catalytic efficiency. Graphical Abstract: Palladium-catalyzed cyanation of aryl chlorides with potassium ferrocyanide leading to aryl nitriles by using Pd(OAc)2/XPhos–SO3Na/PEG-400/H2O as a highly efficient and recyclable catalytic system is described.[Figure not available: see fulltext.]

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1232006-36-8