Welcome to LookChem.com Sign In|Join Free

CAS

  • or

13054-98-3

Post Buying Request

13054-98-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

13054-98-3 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 13054-98-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,3,0,5 and 4 respectively; the second part has 2 digits, 9 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 13054-98:
(7*1)+(6*3)+(5*0)+(4*5)+(3*4)+(2*9)+(1*8)=83
83 % 10 = 3
So 13054-98-3 is a valid CAS Registry Number.

13054-98-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name Dodecahydrodibenzofuran (mixture of isomers)

1.2 Other means of identification

Product number -
Other names 3-(-Ethyl--phenylamino)propionitrile

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:13054-98-3 SDS

13054-98-3Upstream product

13054-98-3Downstream Products

13054-98-3Relevant articles and documents

Supported Pt-Ni bimetallic nanoparticles catalyzed hydrodeoxygenation of dibenzofuran with high selectivity to bicyclohexane

Cai, Chun,Wu, Pengyu

supporting information, (2021/07/10)

Catalytic hydrodeoxygenation (HDO) is one of the most effective methods to upgrade the oxygen-containing compounds derived from coal tar to valuable hydrocarbons. Herein, an efficient bimetallic catalyst Pt1Ni4/MgO was prepared and applied in the HDO of dibenzofuran (DBF). High yield (95%) of the desired product bicyclohexane (BCH) was achieved at 240 °C and 1.2 MPa of H2. Superior catalytic performance could be ascribed to the “relay catalysis” of Pt sites and Ni sites, and the reaction pathway is proposed as well. Scale-up experiment and recyclability test were also performed, which demonstrated the recyclability and promising potential application of Pt1Ni4/MgO.

Promising Ni/Al-SBA-15 catalysts for hydrodeoxygenation of dibenzofuran into fuel grade hydrocarbons: Synergetic effect of Ni and Al-SBA-15 support

Gbadamasi, Sharafadeen,Ali, Tammar Hussein,Voon, Lee Hwei,Atta, Abdulazeez Yusuf,Sudarsanam, Putla,Bhargava, Suresh K.,Abd Hamid, Sharifah Bee

, p. 25992 - 26002 (2016/03/25)

This work has been undertaken with the aim of designing promising noble-metal-free catalysts for efficient hydrodeoxygenation (HDO) of dibenzofuran (DBF) into fuel grade hydrocarbons. For this, various Ni/Al-SBA-15 catalysts with different Si/Al (50, 60, 70 and 80) mole ratios were synthesized and their catalytic performance was tested for HDO of DBF in a batch reactor. The catalysts were systematically characterized using XRD, N2-adsorption-desorption, Raman, H2-TPR, NH3-TPD, XRF, and FESEM techniques. The activity results showed that the HDO of DBF proceeds via hydrogenation of benzene on the Ni sites followed by cleavage of C-O bonds on the acidic sites of the catalyst to yield unsaturated hydrocarbons. Further hydrogenation of unsaturated hydrocarbons on the Ni sites gives bicyclohexane as the major product. Remarkably, a 100% DBF conversion was found for all the catalysts except for Ni/SBA-15 and Ni/Al-SBA-15(80) (Si/Al mole ratio = 80) catalysts, which showed 97.97 and 99.31%, respectively. A significant observation noticed in this study is that the incorporation of Al into Ni/SBA-15 results in an outstanding improvement in the selectivity of the bicyclohexane product. Among the catalysts tested, the Ni/Al-SBA-15(50) (Si/Al mole ratio = 50) catalyst showed the highest efficiency, with superior selectivity of ~87% for bicyclohexane and ~96% degree of deoxygenation at 10 MPa, 260 °C and 5 h. The obtained structure-activity results reveal the synergetic effect of Ni and support in HDO of DBF reaction: the concentration of acidic sites has a significant effect on the selectivity of the desired products.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 13054-98-3