Welcome to LookChem.com Sign In|Join Free

CAS

  • or

132533-07-4

Post Buying Request

132533-07-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

132533-07-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 132533-07-4 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,3,2,5,3 and 3 respectively; the second part has 2 digits, 0 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 132533-07:
(8*1)+(7*3)+(6*2)+(5*5)+(4*3)+(3*3)+(2*0)+(1*7)=94
94 % 10 = 4
So 132533-07-4 is a valid CAS Registry Number.

132533-07-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-(4-methoxyphenyl)but-2-en-1-ol

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:132533-07-4 SDS

132533-07-4Relevant articles and documents

Selective Synthesis of Z-Cinnamyl Ethers and Cinnamyl Alcohols through Visible Light-Promoted Photocatalytic E to Z Isomerization

Li, Hengchao,Chen, Hang,Zhou, Yang,Huang, Jin,Yi, Jundan,Zhao, Hongcai,Wang, Wei,Jing, Linhai

supporting information, p. 555 - 559 (2020/02/05)

A photocatalytic E to Z isomerization of alkenes using an iridium photosensitizer under mild reaction conditions is disclosed. This method provides scalable and efficient access to Z-cinnamyl ether and allylic alcohol derivatives in high yields with excellent stereoselectivity. Importantly, this method also provides a powerful strategy for the selective synthesis of Z-magnolol and honokiol derivatives possessing potential biological activity.

Highly Selective and Catalytic Generation of Acyclic Quaternary Carbon Stereocenters via Functionalization of 1,3-Dienes with CO2

Chen, Xiao-Wang,Zhu, Lei,Gui, Yong-Yuan,Jing, Ke,Jiang, Yuan-Xu,Bo, Zhi-Yu,Lan, Yu,Li, Jing,Yu, Da-Gang

, p. 18825 - 18835 (2019/11/28)

The catalytic asymmetric functionalization of readily available 1,3-dienes is highly important, but current examples are mostly limited to the construction of tertiary chiral centers. The asymmetric generation of acyclic products containing all-carbon quaternary stereocenters from substituted 1,3-dienes represents a more challenging, but highly desirable, synthetic process for which there are very few examples. Herein, we report the highly selective copper-catalyzed generation of chiral all-carbon acyclic quaternary stereocenters via functionalization of 1,3-dienes with CO2. A variety of readily available 1,1-disubstituted 1,3-dienes, as well as a 1,3,5-triene, undergo reductive hydroxymethylation with high chemo-, regio-, E/Z-, and enantioselectivities. The reported method features good functional group tolerance, is readily scaled up to at least 5 mmol of starting diene, and generates chiral products that are useful building blocks for further derivatization. Systemic mechanistic investigations using density functional theory calculations were performed and provided the first theoretical investigation for an asymmetric transformation involving CO2. These computational results indicate that the 1,2-hydrocupration of 1,3-diene proceeds with high π-facial selectivity to generate an (S)-allylcopper intermediate, which further induces the chirality of the quaternary carbon center in the final product. The 1,4-addition of an internal allylcopper complex, which differs from previous reports involving terminal allylmetallic intermediates, to CO2 kinetically determines the E/Z- and regioselectivity. The rapid reduction of a copper carboxylate intermediate to the corresponding silyl-ether in the presence of Me(MeO)2SiH provides the exergonic impetus and leads to chemoselective hydroxymethylation rather than carboxylation. These results provide new insights for guiding further development of asymmetric C-C bond formations with CO2

Synthetic approaches to mono- and bicyclic perortho-esters with a central 1,2,4-trioxane ring as the privileged lead structure in antimalarial and antitumor-active peroxides and clarification of the peroxide relevance

Griesbeck, Axel G.,Br?utigam, Maria,Kleczka, Margarethe,Raabe, Angela

, (2017/01/24)

The synthesis of 4-styryl-substituted 2,3,8-trioxabicyclo[3.3.1]nonanes, peroxides with the core structure of the bioactive 1,2,4-trioxane ring, was conducted by a multistep route starting from the aryl methyl ketones 1a-1c. Condensation and reduction/oxidation delivered enals 4a-4c that were coupled with ethyl acetate and reduced to the 1,3-diol substrates 6a-6c. Highly diastereoselective photooxygenation delivered the hydroperoxides 7a-7c and subsequent PPTS (pyridinium-p-toluenesulfonic acid)-catalyzed peroxyacetalization with alkyl triorthoacetates gave the cyclic peroxides 8a-8e. These compounds in general show only moderate antimalarial activities. In order to extend the repertoire of cyclic peroxide structure, we aimed for the synthesis of spiro-perorthocarbonates from orthoester condensation of β-hydroxy hydroperoxide 9 but could only realize the monocyclic perorthocarbonate 10. That the central peroxide moiety is the key structural motif in anticancer active GST (glutathione S-transferase)-inhibitors was elucidated by the synthesis of a 1,3-dioxane 15-with a similar substitution pattern as the pharmacologically active peroxide 11-via a singlet oxygen ene route from the homoallylic alcohol 12.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 132533-07-4