Welcome to LookChem.com Sign In|Join Free

CAS

  • or

138713-55-0

Post Buying Request

138713-55-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

138713-55-0 Usage

General Description

B-Amino-4-Methoxy-benzeneethanol is an organic compound with the chemical formula C9H13NO2. It is a type of amine and contains a benzene ring with a methoxy group and an alcohol group. b-AMino-4-Methoxy-benzeneethanol is commonly used as a building block for the synthesis of various pharmaceuticals and agrochemicals. It has also been studied for its potential anti-inflammatory and analgesic properties. The compound is a white to off-white powder with a mild aromatic odor, and it is typically stored in a cool, dry place away from heat and sources of ignition. It is important to handle this chemical with caution and to wear appropriate protective equipment during its handling and use.

Check Digit Verification of cas no

The CAS Registry Mumber 138713-55-0 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,3,8,7,1 and 3 respectively; the second part has 2 digits, 5 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 138713-55:
(8*1)+(7*3)+(6*8)+(5*7)+(4*1)+(3*3)+(2*5)+(1*5)=140
140 % 10 = 0
So 138713-55-0 is a valid CAS Registry Number.
InChI:InChI=1S/C9H13NO2/c1-12-8-4-2-7(3-5-8)9(10)6-11/h2-5,9,11H,6,10H2,1H3

138713-55-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Amino-2-(4-methoxyphenyl)ethanol

1.2 Other means of identification

Product number -
Other names 2-amino-2-(p-methoxyphemyl)ethanol

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:138713-55-0 SDS

138713-55-0Relevant articles and documents

Bioproduction of Enantiopure (R)- and (S)-2-Phenylglycinols from Styrenes and Renewable Feedstocks

Sekar, Balaji Sundara,Mao, Jiwei,Lukito, Benedict Ryan,Wang, Zilong,Li, Zhi

, p. 1892 - 1903 (2020/12/22)

Enantiopure (R)- and (S)-2-phenylglycinols are important chiral building blocks for pharmaceutical manufacturing. Several chemical and enzymatic methods for their synthesis were reported, either involving multi-step synthesis or starting from a relatively complex chemical. Here, we developed one-pot simple syntheses of enantiopure (R)- and (S)-2-phenylglycinols from cheap starting materials and renewable feedstocks. Enzyme cascades consisting of epoxidation-hydrolysis-oxidation-transamination were developed to convert styrene 2 a to (R)- and (S)-2-phenylglycinol 1 a, with butanediol dehydrogenase for alcohol oxidation as well as BmTA and NfTA for (R)- and (S)-enantioselective transamination, respectively. The engineered E. coli strains expressing the cascades produced 1015 mg/L (R)-1 a in >99% ee and 315 mg/L (S)-1 a in 91% ee, respectively, from styrene 2 a. The same cascade also converted substituted styrenes 2 b–k and indene 2 l into substituted (R)-phenylglycinols 1 b–k and (1R, 2R)-1-amino-2-indanol 1 l in 95–>99% ee. To transform bio-based L-phenylalanine 6 to (R)-1 a and (S)-1 a, (R)- and (S)-enantioselective enzyme cascades for deamination-decarboxylation-epoxidation-hydrolysis-oxidation-transamination were developed. The engineered E. coli strains produced (R)-1 a and (S)-1 a in high ee at 576 mg/L and 356 mg/L, respectively, from L-phenylalanine 6, as the first synthesis of these compounds from a bio-based chemical. Finally, L-phenylalanine biosynthesis pathway was combined with (R)- or (S)-enantioselective cascade in one strain or coupled strains, to achieve the first synthesis of (R)-1 a and (S)-1 a from a renewable feedstock. The coupled strain approach enhanced the production, affording 274 and 384 mg/L (R)-1 a and 274 and 301 mg/L (S)-1 a, from glucose and glycerol, respectively. The developed methods could be potentially useful to produce these high-value chemicals from cheap starting materials and renewable feedstocks in a green and sustainable manner. (Figure presented.).

Catalytic β C-H amination: Via an imidate radical relay

Stateman, Leah M.,Wappes, Ethan A.,Nakafuku, Kohki M.,Edwards, Kara M.,Nagib, David A.

, p. 2693 - 2699 (2019/03/06)

The first catalytic strategy to harness imidate radicals for C-H functionalization has been developed. This iodine-catalyzed approach enables β C-H amination of alcohols by an imidate-mediated radical relay. In contrast to our first-generation, (super)stoichiometric protocol, this catalytic method enables faster and more efficient reactivity. Furthermore, lower oxidant concentration affords broader functional group tolerance, including alkenes, alkynes, alcohols, carbonyls, and heteroarenes. Mechanistic experiments interrogating the electronic nature of the key 1,5 H-atom transfer event are included, as well as probes for chemo-, regio-, and stereo-selectivity.

Directed β C-H Amination of Alcohols via Radical Relay Chaperones

Wappes, Ethan A.,Nakafuku, Kohki M.,Nagib, David A.

, p. 10204 - 10207 (2017/08/10)

A radical-mediated strategy for β C-H amination of alcohols has been developed. This approach employs a radical relay chaperone, which serves as a traceless director that facilitates selective C-H functionalization via 1,5-hydrogen atom transfer (HAT) and enables net incorporation of ammonia at the β carbon of alcohols. The chaperones presented herein enable direct access to imidate radicals, allowing their first use for H atom abstraction. A streamlined protocol enables rapid conversion of alcohols to their β-amino analogs (via in situ conversion of alcohols to imidates, directed C-H amination, and hydrolysis to NH2). Mechanistic experiments indicate HAT is rate-limiting, whereas intramolecular amination is product- and stereo-determining.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 138713-55-0