1392279-99-0Relevant articles and documents
An off-on COX-2-specific fluorescent probe: Targeting the golgi apparatus of cancer cells
Zhang, Hua,Fan, Jiangli,Wang, Jingyun,Zhang, Shuangzhe,Dou, Bairui,Peng, Xiaojun
, p. 11663 - 11669 (2013)
Identifying cancer cells and quantifying cancer-related events in particular organelles in a rapid and sensitive fashion are important for early diagnosis and for studies on pathology and therapeutics of cancers. Herein a smart off-on cyclooxygenase-2-specific fluorescence probe (ANQ-IMC-6), able to report the presence of cancer cells and to image Golgi-related events, has been designed and evaluated. Cyclooxygenase-2 (COX-2) has been used as imaging target in the probe design, since this enzyme is a biomarker of virtually all cancer cell lines. In the free state in aqueous solution, ANQ-IMC-6 mainly exists in a folded conformation where probe fluorescence is quenched through photoinduced electron transfer between the fluorophore acenaphtho[1,2-b]quinoxaline (ANQ) and the recognition group, indomethacin (IMC). Fluorescence is turned on, by restraining the photoinduced electron transfer, when ANQ-IMC-6 is forced to adopt the unfolded state following binding to COX-2 in the Golgi apparatus of cancer cells. ANQ-IMC-6 provides high signal-to-background staining and has been successfully used to rapidly differentiate cancer cells from normal cells when using flow cytometry and one- and two-photon fluorescence microscopic imaging. Furthermore, ANQ-IMC-6 may be able to visualize dynamic changes of the Golgi apparatus during cancer cell apoptosis, with possible application to early diagnosis.
TWO-PHOTON FLUORESCENT PROBE USING NAPHTHALENE AS MATRIX AND PREPARATION METHOD AND USE THEREOF
-
, (2014/09/29)
The present invention provides a novel category of naphthalene-based two-photon fluorescent probes having a general formula I, wherein: X is selected from the X1, X2, X3 and X4; The mentioned two-photon fluorescent probes have a low fluorescence background in the non-tumor cells and tissues, and have a strong and specific fluorescent signal in the tumor cells and tissues. These probes have a certain level of water-solubility, while having good membrane permeability. In addition, they have a bigger effective two-photon absorption cross section. The compounds of the present invention also have a lower biotoxicity, phototoxicity and photobleaching. There is sufficient difference between the spectral range thereof and that of a biological sample.