Welcome to LookChem.com Sign In|Join Free

CAS

  • or

14463-33-3

Post Buying Request

14463-33-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

14463-33-3 Usage

Definition

ChEBI: A cobalamin in which the central cobalt atom has an oxidation state of +2.

Check Digit Verification of cas no

The CAS Registry Mumber 14463-33-3 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,4,4,6 and 3 respectively; the second part has 2 digits, 3 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 14463-33:
(7*1)+(6*4)+(5*4)+(4*6)+(3*3)+(2*3)+(1*3)=93
93 % 10 = 3
So 14463-33-3 is a valid CAS Registry Number.
InChI:InChI=1/C62H90N13O14P.Co/c1-29-20-39-40(21-30(29)2)75(28-70-39)57-52(84)53(41(27-76)87-57)89-90(85,86)88-31(3)26-69-49(83)18-19-59(8)37(22-46(66)80)56-62(11)61(10,25-48(68)82)36(14-17-45(65)79)51(74-62)33(5)55-60(9,24-47(67)81)34(12-15-43(63)77)38(71-55)23-42-58(6,7)35(13-16-44(64)78)50(72-42)32(4)54(59)73-56;/h20-21,23,28,31,34-37,41,52-53,56-57,76,84H,12-19,22,24-27H2,1-11H3,(H15,63,64,65,66,67,68,69,71,72,73,74,77,78,79,80,81,82,83,85,86);/q;+3/p-1/t31?,34-,35-,36-,37+,41+,52?,53?,56?,57+,59-,60+,61+,62+;/m1./s1

14463-33-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name cob(II)alamin

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:14463-33-3 SDS

14463-33-3Relevant articles and documents

Spectroscopic Studies of the EutT Adenosyltransferase from Salmonella enterica: Mechanism of Four-Coordinate Co(II)Cbl Formation

Pallares, Ivan G.,Moore, Theodore C.,Escalante-Semerena, Jorge C.,Brunold, Thomas C.

, p. 3694 - 3704 (2016)

EutT from Salmonella enterica is a member of a class of enzymes termed ATP:Co(I)rrinoid adenosyltransferases (ACATs), implicated in the biosynthesis of adenosylcobalamin (AdoCbl). In the presence of cosubstrate ATP, ACATs raise the Co(II)/Co(I) reduction potential of their cob(II)alamin [Co(II)Cbl] substrate by >250 mV via the formation of a unique four-coordinate (4c) Co(II)Cbl species, thereby facilitating the formation of a "supernucleophilic" cob(I)alamin intermediate required for the formation of the AdoCbl product. Previous kinetic studies of EutT revealed the importance of a HX11CCX2C(83) motif for catalytic activity and have led to the proposal that residues in this motif serve as the binding site for a divalent transition metal cofactor [e.g., Fe(II) or Zn(II)]. This motif is absent in other ACAT families, suggesting that EutT employs a distinct mechanism for AdoCbl formation. To assess how metal ion binding to the HX11CCX2C(83) motif affects the relative yield of 4c Co(II)Cbl generated in the EutT active site, we have characterized several enzyme variants by using electronic absorption, magnetic circular dichroism, and electron paramagnetic resonance spectroscopies. Our results indicate that Fe(II) or Zn(II) binding to the HX11CCX2C(83) motif of EutT is required for promoting the formation of 4c Co(II)Cbl. Intriguingly, our spectroscopic data also reveal the presence of an equilibrium between five-coordinate "base-on" and "base-off" Co(II)Cbl species bound to the EutT active site at low ATP concentrations, which shifts in favor of "base-off" Co(II)Cbl in the presence of excess ATP, suggesting that the base-off species serves as a precursor to 4c Co(II)Cbl.

Electron transfer. 70. Reductions of oxyhalogens by vitamin B12r (Cob(II)alamin)

Balasubramanian,Gould

, p. 3689 - 3693 (2008/10/08)

Vitamin B12r (cob(II)alamin), the Co(II) derivative of vitamin B12, reduces ClO3- , BrO3-, IO3-, and ClO2- to the corresponding halide ions in acid solution and o-iodosobenzoic acid to the o-iodo acid. Specific rates for these reductions have been measured and their acid dependencies examined. In each case, the overall rate is determined by the first step in the reaction sequence, the initial 1e reduction of the oxyhalogen. Each of the B12r-halate reactions is first order in [H+]; the B12r-ClO2- reaction exhibits both an [acid]-independent and first-order-[H+] term, whereas reduction of iodosobenzoic acid features an inverse-[H+] term. The B12r-IO3- reaction, but none of the others, is strongly autocatalytic, probably reflecting the reaction of the product I- with IO3- to form the very reactive oxidant, I2. Vitamin B12s, the Co(I) derivative of B12, reduces ClO3- about 104 times as rapidly as B12r, a rate ratio too small to be compatible with the 0.78-V difference in the formal potentials of the two reductants on the basis of the Marcus model for outer-sphere electron-transfer processes. It is proposed that the B12r-ClO3- reaction (and, by implication, the reactions with BrO3-, IO3-, and ClO2-) proceeds mainly by an inner-sphere route that utilizes an oxygen bridge between Co(II) and halogen. The path for the B12s-ClO3- reaction is uncertain, nor can we say whether this reduction involves transfer of a single electron or whether it is initiated by a 2e transaction, forming of a Co(III) intermediate that undergoes comproportionation with B12s to form 2 units of Co(II).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 14463-33-3