Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1544-15-6

Post Buying Request

1544-15-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1544-15-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 1544-15-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,5,4 and 4 respectively; the second part has 2 digits, 1 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 1544-15:
(6*1)+(5*5)+(4*4)+(3*4)+(2*1)+(1*5)=66
66 % 10 = 6
So 1544-15-6 is a valid CAS Registry Number.

1544-15-6Downstream Products

1544-15-6Relevant articles and documents

Benzyl thioether formation merging copper catalysis

Lin, Ying,Xie, Tian,Xu, Bing,Xu, Li,Ye, Xiang-Yang,Ye, Yang

, p. 692 - 697 (2022/01/22)

A novel copper-catalyzed thioetherification reaction has been developed to afford benzyl thioethers in moderate to excellent yields. Under the mild and easy-to-operate conditions, a variety of thioethers are efficiently prepared from readily available ben

Electron transfer to sulfides and disulfides: Intrinsic barriers and relationship between heterogeneous and homogeneous electron-transfer kinetics

Meneses, Ana Belen,Antonello, Sabrina,Arevalo, Maria Carmen,Gonzalez, Concepcion Carmen,Sharma, Jadab,Wallette, Andrea N.,Workentin, Mark S.,Maran, Flavio

, p. 7983 - 7995 (2008/04/01)

The electron-acceptor properties of series of related sulfides and disulfides were investigated in N,N-dimethylformamide with homogeneous (redox catalysis) and/or heterogeneous (cyclic voltammetry and convolution analysis) electrochemical techniques. The electron-transfer rate constants were determined as a function of the reaction free energy and the corresponding intrinsic barriers were determined. The dependence of relevant thermodynamic and kinetic parameters on substituents was assessed. The kinetic data were also analyzed in relation to corresponding data pertaining to reduction of diaryl disulfides. All investigated reductions take place by stepwise dissociative electron transfer (DET) which causes cleavage of the Calkyl-S or S-S bond. A generalized picture of how the intrinsic electron-transfer barrier depends on molecular features, ring substituents, and the presence of spacers between the frangible bond and aromatic groups was established. The reduction mechanism was found to undergo a progressive (and now predictable) transition between common stepwise DET and DET proceeding through formation of loose radical anions. The intrinsic barriers were compared with available results for ET to several classes of dissociative- and nondissociative-type acceptors, and this led to verification that the heterogeneous and the homogeneous data correlate as predicted by the Hush theory.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1544-15-6