1616956-75-2Relevant articles and documents
Stereochemical Rules Govern the Soft Self-Assembly of Achiral Compounds: Understanding the Heliconical Liquid-Crystalline Phases of Bent-Core Mesogens
Lehmann, Anne,Alaasar, Mohamed,Poppe, Marco,Poppe, Silvio,Prehm, Marko,Nagaraj, Mamatha,Sreenilayam, Sithara P.,Panarin, Yuri P.,Vij, Jagdish K.,Tschierske, Carsten
, p. 4714 - 4733 (2020/03/13)
A series of bent-shaped 4-cyanoresorcinol bisterephthalates is reported. Some of these achiral compounds spontaneously form a short-pitch heliconical lamellar liquid-crystalline phase with incommensurate 3-layer pitch and the helix axis parallel to the layer normal. It is observed at the paraelectric-(anti)ferroelectric transition, if it coincides with the transition from random to uniform tilt and with the transition from anticlinic to synclinic tilt correlation of the molecules in the layers of the developing tilted smectic phase. For compounds with long chains the heliconical phase is only field-induced, but once formed it is stable in a distinct temperature range, even after switching off the field. The presence of the helix changes the phase properties and the switching mechanism from the naturally preferred rotation around the molecular long axis, which reverses the chirality, to a precession on a cone, which retains the chirality. These observations are explained by diastereomeric relations between two coexisting modes of superstructural chirality. One is the layer chirality, resulting from the combination of tilt and polar order, and the other one is the helical twist evolving between the layers. At lower temperature the helical structure is replaced by a non-tilted and ferreoelectric switching lamellar phase, providing an alternative non-chiral way for the transition from anticlinic to synclinic tilt.
Controlling the formation of heliconical smectic phases by molecular design of achiral bent-core molecules
Alaasar, Mohamed,Cai, Xiaoqian,Eremin, Alexey,Kurachkina, Marharyta,Lehmann, Anne,Liu, Feng,Nagaraj, Mamatha,Poppe, Marco,Poppe, Silvio,Tamba, Maria-Gabriela,Tschierske, Carsten,Vij, Jagdish K.
, p. 3316 - 3336 (2020/03/23)
Fluids with spontaneous helical structures formed by achiral low molecular mass molecules is a newly emerging field with great application potential. Here, we explore the chemical mechanisms of the helix formation by systematically modifying the structure of a bent 4-cyanoresorcinol unit functionalized with two different phenyl benzoate based aromatic rods and terminated with two alkyl chains of variable length. The majority of these achiral compounds self-assemble, forming a short-pitch heliconical liquid crystalline phase in broad temperature ranges. In some cases, it occurs without any competing low-temperature phase. We demonstrate that the mirror symmetry broken mesophase occurs at the paraelectric-(anti)ferroelectric transition if the tilt angle of the molecules in the smectic layers is around 18-20° and if this transition coincides with a change of the tilt correlation between the layers. In the close vicinity of this transition, a field-induced heliconical phase develops as well as a new heliconical phase with polarization-randomized structure. These investigations provide a blueprint for the future design of achiral molecules capable of spontaneous mirror symmetry breaking by the formation of heliconical liquid crystalline phases.
4-Methylresorcinol based bent-core liquid crystals with azobenzene wings-a new class of compounds with dark conglomerate phases
Alaasar, Mohamed,Prehm, Marko,Brautzsch, Marcel,Tschierske, Carsten
, p. 5487 - 5501 (2014/07/08)
Stochastic achiral symmetry breaking in soft matter systems, leading to conglomerates of macroscopically chiral domains (so-called dark conglomerate = DC phases) is of contemporary interest from a fundamental scientific point of view as well as for numero