Welcome to LookChem.com Sign In|Join Free

CAS

  • or

16387-61-4

Post Buying Request

16387-61-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

16387-61-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 16387-61-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,6,3,8 and 7 respectively; the second part has 2 digits, 6 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 16387-61:
(7*1)+(6*6)+(5*3)+(4*8)+(3*7)+(2*6)+(1*1)=124
124 % 10 = 4
So 16387-61-4 is a valid CAS Registry Number.
InChI:InChI=1/C12H16O/c13-11-7-2-1-4-8-12-9-5-3-6-10-12/h3,5-6,9-11H,1-2,4,7-8H2

16387-61-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name 6-Phenylhexanal

1.2 Other means of identification

Product number -
Other names 6-Phenyl-hexan-3-on

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:16387-61-4 SDS

16387-61-4Relevant articles and documents

Iron-Catalyzed C-C Single-Bond Cleavage of Alcohols

Liu, Wei,Wu, Qiang,Wang, Miao,Huang, Yahao,Hu, Peng

supporting information, p. 8413 - 8418 (2021/11/01)

An iron-catalyzed deconstruction/hydrogenation reaction of alcohols through C-C bond cleavage is developed through photocatalysis, to produce ketones or aldehydes as the products. Tertiary, secondary, and primary alcohols bearing a wide range of substituents are suitable substrates. Complex natural alcohols can also perform the transformation selectively. A investigation of the mechanism reveals a procedure that involves chlorine radical improved O-H homolysis, with the assistance of 2,4,6-collidine.

A Redox Strategy for Light-Driven, Out-of-Equilibrium Isomerizations and Application to Catalytic C-C Bond Cleavage Reactions

Ota, Eisuke,Wang, Huaiju,Frye, Nils Lennart,Knowles, Robert R.

supporting information, p. 1457 - 1462 (2019/01/25)

We report a general protocol for the light-driven isomerization of cyclic aliphatic alcohols to linear carbonyl compounds. These reactions proceed via proton-coupled electron-transfer activation of alcohol O-H bonds followed by subsequent C-C β-scission of the resulting alkoxy radical intermediates. In many cases, these redox-neutral isomerizations proceed in opposition to a significant energetic gradient, yielding products that are less thermodynamically stable than the starting materials. A mechanism is presented to rationalize this out-of-equilibrium behavior that may serve as a model for the design of other contrathermodynamic transformations driven by excited-state redox events.

Non-imidazole histamine H3 ligands. Part VI. Synthesis and preliminary pharmacological investigation of thiazole-type histamine H3-receptor antagonists with lacking a nitrogen nucleus in the side chain

Guryn, Roman,Staszewski, Marek,Kopczacki, Piotr,Walczyński, Krzysztof

, p. 65 - 76 (2017/06/05)

Background: Antagonists to the H3 receptor are considered to be potential drugs for the treatment of Alzheimer's disease, attention deficit-hyperactive disorder, memory and learning deficits, and epilepsy. The initial development of potent H3 receptor antagonists focused on extensive modification of the natural ligand histamine. However, it has appeared that imidazole-containing ligands are associated with inhibition of cytochrome P450 enzymes, caused by imidazole nitrogen complexation to heme iron in the active site of the enzyme. For these reasons, the development of potent non-imidazole H3 receptor antagonists was eagerly awaited. Objective: Previously, we reported the synthesis and pharmacological in vitro characterization of series of potent histamine H3-receptor non-imidazole antagonists belonging to the class of substituted 2-thiazol-4-n-propylpiperazines. A lead compound 1 of this family was a derivative carrying the ethylaminomethylpropyl chain. Methods: With the aim of increasing lipophilicity, that will help the ligands to cross the blood-brain barrier, we synthesized a series of new 2-thiazol-4-n-propylpiperazines where the ethylaminomethylpropyl moiety was replaced by a p-substituted-, an unsubstituted benzene ring, and ω-phenylalkyl substituent at positions 4 and 5 of thiazole ring, respectively. All compounds were tested for H3 antagonistic effects in vitro using the electrically contracting guinea pig jejunum. Results: The most active compounds of presented series 3d, 3e, and 3j showed lower affinity than the lead compound 1 and additionally, derivatives 3d and 3j possessed weak, competitive H1-antagonistic activity. This is in contrast to the lead compound 1 that has no affinity at H1 receptor. Conclusion: We can conclude that a side chain in the 2-thiazol-4-n-propylpiperazine scaffold should contain a basic center and should be present at a favorable position 5 of thiazole ring.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 16387-61-4