Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1686-32-4

Post Buying Request

1686-32-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1686-32-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 1686-32-4 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,6,8 and 6 respectively; the second part has 2 digits, 3 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 1686-32:
(6*1)+(5*6)+(4*8)+(3*6)+(2*3)+(1*2)=94
94 % 10 = 4
So 1686-32-4 is a valid CAS Registry Number.

1686-32-4Upstream product

1686-32-4Relevant articles and documents

Engineering a Highly Defective Stable UiO-66 with Tunable Lewis-Br?nsted Acidity: The Role of the Hemilabile Linker

De Geyter, Nathalie,De Vos, Dirk E.,Feng, Xiao,Hajek, Julianna,Hoffman, Alexander E. J.,Jena, Himanshu Sekhar,Leus, Karen,Leyssens, Karen,Marquez, Carlos,Meynen, Vera,Morent, Rino,Van Der Voort, Pascal,Van Speybroeck, Veronique,Veerapandian, Savita K. P.,Wang, Guangbo

, p. 3174 - 3183 (2020)

The stability of metal-organic frameworks (MOFs) typically decreases with an increasing number of defects, limiting the number of defects that can be created and limiting catalytic and other applications. Herein, we use a hemilabile (Hl) linker to create up to a maximum of six defects per cluster in UiO-66. We synthesized hemilabile UiO-66 (Hl-UiO-66) using benzene dicarboxylate (BDC) as linker and 4-sulfonatobenzoate (PSBA) as the hemilabile linker. The PSBA acts not only as a modulator to create defects but also as a coligand that enhances the stability of the resulting defective framework. Furthermore, upon a postsynthetic treatment in H2SO4, the average number of defects increases to the optimum of six missing BDC linkers per cluster (three per formula unit), leaving the Zr-nodes on average sixfold coordinated. Remarkably, the thermal stability of the materials further increases upon this treatment. Periodic density functional theory calculations confirm that the hemilabile ligands strengthen this highly defective structure by several stabilizing interactions. Finally, the catalytic activity of the obtained materials is evaluated in the acid-catalyzed isomerization of α-pinene oxide. This reaction is particularly sensitive to the Br?nsted or Lewis acid sites in the catalyst. In comparison to the pristine UiO-66, which mainly possesses Br?nsted acid sites, the Hl-UiO-66 and the postsynthetically treated Hl-UiO-66 structures exhibited a higher Lewis acidity and an enhanced activity and selectivity. This is further explored by CD3CN spectroscopic sorption experiments. We have shown that by tuning the number of defects in UiO-66 using PSBA as the hemilabile linker, one can achieve highly defective and stable MOFs and easily control the Br?nsted to Lewis acid ratio in the materials and thus their catalytic activity and selectivity.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1686-32-4