174609-74-6Relevant articles and documents
Further SAR studies on natural template based neuroprotective molecules for the treatment of Alzheimer's disease
Singh, Yash Pal,Shankar, Gauri,Jahan, Shagufta,Singh, Gourav,Kumar, Navneet,Barik, Atanu,Upadhyay, Prabhat,Singh, Lovejit,Kamble, Kajal,Singh, Gireesh Kumar,Tiwari, Sanjay,Garg, Prabha,Gupta, Sarika,Modi, Gyan
, (2021/09/04)
In our earlier paper, we described ferulic acid (FA) template based novel series of multifunctional cholinesterase (ChE) inhibitors for the management of AD. This report has further extended the structure–activity relationship (SAR) studies of this series of molecules in a calibrated manner to improve upon the ChEs inhibition and antioxidant property to identify the novel potent multifunctional molecules. To investigate the effect of replacement of phenylpiperazine ring with benzylpiperazine, increase in the linker length between FA and substituted phenyl ring, and replacement of indole moiety with tryptamine on this molecular template, three series of novel molecules were developed. All synthesized compounds were tested for their acetyl and butyryl cholinestrases (AChE and BChE) inhibitory properties. Enzyme inhibition and PAS binding studies identified compound 13b as a lead molecule with potent inhibitor property towards AChE/BChE (AChE IC50 = 0.96 ± 0.14 μM, BChE IC50 = 1.23 ± 0.23 μM) compared to earlier identified lead molecule EJMC-G (AChE IC50 = 5.74 ± 0.13 μM, BChE IC50 = 14.05 ± 0.10 μM, respectively). Molecular docking and dynamics studies revealed that 13b fits well into the active sites of AChE and BChE, forming stable and strong interactions with key residues Trp86, Ser125, Glu202, Trp 286, Phe295, Tyr 337 in AChE, and with Trp 82, Gly115, Tyr128, and Ser287 in BChE. The compound, 13b was found to be three times more potent antioxidant in a DPPH assay (IC50 = 20.25 ± 0.26 μM) over the earlier identified EJMC-B (IC50 = 61.98 ± 0.30 μM) and it also was able to chelate iron. Co-treatment of 13b with H2O2, significantly attenuated and reversed H2O2-induced toxicity in the SH-SY5Y cells. The parallel artificial membrane permeability assay-blood brain barrier (PAMPA-BBB) revealed that 13b could cross BBB efficiently. Finally, the in-vivo efficacy of 13b at dose of 10 mg/kg in scopolamine AD model has been demonstrated. The present study strongly suggests that the naturally inspired multifunctional molecule 13b may behave as a potential novel therapeutic agent for AD management.
Piperazine, piperidine and tetrahydropyridine derivative of indol-3-alkyl as 5-HT1D-α agonists
-
, (2008/06/13)
Compounds of formula (I), or a salt or prodrug thereof, wherein Z represents an optionally substituted five-membered heteroaromatic ring selected from furan, thiophene, pyrrole, oxazole, thiazole, isoxazole, isothiazole, imidazole, pyrazole, oxadiazole, thiadiazole, triazole and tetrazole; E represents a chemical bond or a straight or branched alkylene chain containing from 1 to 4 carbon atoms; Q represents a straight or branched alkylene chain containing from 1 to 6 carbon atoms, optionally substituted in any position by a hydroxy group; T represents nitrogen or CH; U represents nitrogen or C--R2 ; V represents oxygen, sulphur or N--R3 ; --F--G-- represents --CH2--N--, --CH2--CH-- or --CH=C--; R1 represents C3-6 alkenyl, C3-6 alkynyl, aryl(C1-6)alkyl or heteroaryl(C1-6)alkyl, any of which groups may be optionally substituted; and R2 and R3 independently represent hydrogen or C1-6 alkyl are selective agonists of 5-HT1D receptors, being potent agonists of the human 5-HT1Dalpha receptor subtype, while possessing at least a 10-fold selective affinity for the 5-HT1Dalpha receptor subtype, relative to the 5-HT1Dbeta subtype; they are therefore useful in the treatment and/or prevention of clinical conditions, in particular migraine and associated disorders, for which a subtype-selective agonist of 5-HT1D receptors is indicated, while eliciting fewer side-effects, notably adverse cardiovascular events, than those associated with non-subtype-selective 5-HT1D receptor agonists.