Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1841-58-3

Post Buying Request

1841-58-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • BEST PRICE/3'-FLUORO-BIPHENYL-4-CARBOXYLIC ACID CAS NO.1841-58-3

    Cas No: 1841-58-3

  • USD $ 7.0-8.0 / Metric Ton

  • 1 Metric Ton

  • 1000 Metric Ton/Day

  • KAISA GROUP INC
  • Contact Supplier

1841-58-3 Usage

Uses

3''-Fluorobiphenyl-4-carboxylic Acid acts as a reagent in the synthesis of benzoic acid and biphenyl imidazole derivatives with antifungal activities.

Check Digit Verification of cas no

The CAS Registry Mumber 1841-58-3 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,8,4 and 1 respectively; the second part has 2 digits, 5 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 1841-58:
(6*1)+(5*8)+(4*4)+(3*1)+(2*5)+(1*8)=83
83 % 10 = 3
So 1841-58-3 is a valid CAS Registry Number.

1841-58-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 3′-Fluorobiphenyl-4-carboxylic acid

1.2 Other means of identification

Product number -
Other names 4-(3-fluorophenyl)benzoic acid

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1841-58-3 SDS

1841-58-3Downstream Products

1841-58-3Relevant articles and documents

Improving the metabolic stability of antifungal compounds based on a scaffold hopping strategy: Design, synthesis, and structure-activity relationship studies of dihydrooxazole derivatives

Cheng, Maosheng,Su, Xin,Sun, Nannan,Sun, Yin,Tian, Linfeng,Yin, Wenbo,Zhang, Chu,Zhao, Dongmei,Zhao, Liyu,Zhao, Shizhen,Zheng, Yang

, (2021/08/07)

L-amino alcohol derivatives exhibited high antifungal activity, but the metabolic stability of human liver microsomes in vitro was poor, and the half-life of optimal compound 5 was less than 5 min. To improve the metabolic properties of the compounds, the scaffold hopping strategy was adopted and a series of antifungal compounds with a dihydrooxazole scaffold was designed and synthesized. Compounds A33-A38 substituted with 4-phenyl group on dihydrooxazole ring exhibited excellent antifungal activities against C. albicans, C. tropicalis and C. krusei, with MIC values in the range of 0.03–0.25 μg/mL. In addition, the metabolic stability of compounds A33 and A34 in human liver microsomes in vitro was improved significantly, with the half-life greater than 145 min and the half-life of 59.1 min, respectively. Moreover, pharmacokinetic studies in SD rats showed that A33 exhibited favourable pharmacokinetic properties, with a bioavailability of 77.69%, and half-life (intravenous administration) of 9.35 h, indicating that A33 is worthy of further study.

Combating fluconazole-resistant fungi with novel β-azole-phenylacetone derivatives

Zhao, Liyu,Sun, Nannan,Tian, Linfeng,Sun, Yin,Chen, Yixuan,Wang, Xinran,Zhao, Shizhen,Su, Xin,Zhao, Dongmei,Cheng, Maosheng

, (2019/09/19)

A series of β-azole-phenylacetone derivatives with novel structures were designed and synthesized to combat the increasing incidence of susceptible fungal infections and drug-resistant fungal infections. The antifungal activity of the synthesized compounds was assessed against five susceptible strains and five fluconazole-resistant strains. Antifungal activity tests showed that most of the compounds exhibited excellent antifungal activities against five pathogenic strains with MIC values in the range of 0.03–1 μg/mL. Compounds with R1 = 3-F substituted and 15o and 15ae exhibited moderate antifungal activities against fluconazole-resistant strains 17# and CaR with MIC values in the range of 1–8 μg/mL. Compounds with R1 = H or 2-F (such as 15a, 15o, 15p) displayed moderate to good antifungal activity against fluconazole-resistant strains 632, 901 and 904 with MIC values in the range of 0.125–4 μg/mL. Notably, 15o and 15ae exhibited antifungal activity against five susceptible strains and five fluconazole-resistant strains. Preliminary mechanistic studies showed that the potent antifungal activity of compound 15ae stemmed from inhibition of C. albicans CYP51. Compounds 15o, 15z and 15ae were nearly nontoxic to mammalian A549 cells.

A convenient chemical-microbial method for developing fluorinated pharmaceuticals

Bright, Tara V.,Dalton, Fay,Elder, Victoria L.,Murphy, Cormac D.,O'Connor, Neil K.,Sandford, Graham

, p. 1135 - 1142 (2013/03/28)

A significant proportion of pharmaceuticals are fluorinated and selecting the site of fluorine incorporation can be an important beneficial part a drug development process. Here we describe initial experiments aimed at the development of a general method of selecting optimum sites on pro-drug molecules for fluorination, so that metabolic stability may be improved. Several model biphenyl derivatives were transformed by the fungus Cunninghamella elegans and the bacterium Streptomyces griseus, both of which contain cytochromes P450 that mimic oxidation processes in vivo, so that the site of oxidation could be determined. Subsequently, fluorinated biphenyl derivatives were synthesised using appropriate Suzuki-Miyaura coupling reactions, positioning the fluorine atom at the pre-determined site of microbial oxidation; the fluorinated biphenyl derivatives were incubated with the microorganisms and the degree of oxidation assessed. Biphenyl-4-carboxylic acid was transformed completely to 4′-hydroxybiphenyl-4-carboxylic acid by C. elegans but, in contrast, the 4′-fluoro-analogue remained untransformed exemplifying the microbial oxidation-chemical fluorination concept. 2′-Fluoro- and 3′-fluoro-biphenyl-4-carboxylic acid were also transformed, but more slowly than the non-fluorinated biphenyl carboxylic acid derivative. Thus, it is possible to design compounds in an iterative fashion with a longer metabolic half-life by identifying the sites that are most easily oxidised by in vitro methods and subsequent fluorination without recourse to extensive animal studies.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1841-58-3