Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1882-71-9

Post Buying Request

1882-71-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1882-71-9 Usage

General Description

2-Amino-5-methoxybenzamide is a chemical compound with the molecular formula C8H10N2O2. It is an aromatic amine derivative, containing both an amino group and a methoxy group attached to a benzene ring. 2-Amino-5-methoxybenzamide is used in the pharmaceutical industry as a building block for the synthesis of various pharmaceutical drugs and chemical intermediates. It has also been studied for its potential biological activities, including its role as an enzyme inhibitor. 2-Amino-5-methoxybenzamide has also been investigated for its antitumor and antioxidative properties, making it a compound of interest in medicinal chemistry.

Check Digit Verification of cas no

The CAS Registry Mumber 1882-71-9 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,8,8 and 2 respectively; the second part has 2 digits, 7 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 1882-71:
(6*1)+(5*8)+(4*8)+(3*2)+(2*7)+(1*1)=99
99 % 10 = 9
So 1882-71-9 is a valid CAS Registry Number.
InChI:InChI=1/C8H10N2O2/c1-12-5-2-3-7(9)6(4-5)8(10)11/h2-4H,9H2,1H3,(H2,10,11)

1882-71-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Amino-5-methoxybenzamide

1.2 Other means of identification

Product number -
Other names 2-amino-5-methoxy-benzoic acid amide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1882-71-9 SDS

1882-71-9Relevant articles and documents

-

Bergmann,Bentov

, p. 1654 (1955)

-

A synthetic resveratrol analog termed Q205 reactivates latent HIV-1 through activation of P-TEFb

Duan, Heng,Li, Chao,Li, Lin,Li, Yibin,Liang, Taizhen,Liu, Shuwen,Qiao, Xinman,Wu, Ziyao,Xi, Baomin,Zhang, Xuanxuan,Zhao, Kangni

, (2022/01/19)

The persistence of HIV-1 latent reservoir creates the major obstacle toward an HIV-1 cure. The “shock and kill” strategy aims to reverse HIV-1 proviral latency using latency-reversing agents (LRAs), thus boosting immune recognition and clearance to residual infected cells. Unfortunately, to date, none of these tested LRA candidates has been demonstrated effectiveness and/or safety in reactivation HIV-1 latency. The discovery and development of effective, safe and affordable LRA candidates are urgently needed for creating an HIV-1 functional cure. Here, we designed and synthesized a series of small-molecule phenoxyacetic acid derivatives based on the resveratrol scaffold and found one of them, named 5, 7-dimethoxy-2-(5-(methoxymethyl) furan-2-yl) quinazolin-4(3H)-one (Q205), effectively reactivated latent HIV-1 in latent HIV-1-infected cells without a corresponding increase in induction of potentially damaging cytokines. The molecular mechanism of Q205 is shown to increase the phosphorylation of the CDK9 T-loop at position Thr186, dissociate positive transcription elongation factor b (P-TEFb) from BRD4, and promote the Tat-mediated HIV-1 transcription and RNA polymerase II (RNAPII) C-terminal domain (CTD) on Ser (CTD-Ser2P) to bind to the HIV-1 promoter. This study provides a unique insight into resveratrol modified derivatives as promising leads for preclinical LRAs, which in turn may help toward inhibitor design and chemical optimization for improving HIV-1 shock-and kill-based efforts.

Synthesis and nematicidal activities of 1,2,3-benzotriazin-4-one containing 4,5-dihydrothiazole-2-thiol derivatives against Meloidogyne incognita

Chen, Xiulei,Zhou, Zhen,Li, Zhong,Xu, Xiaoyong

, p. 194 - 200 (2019/09/13)

A series of novel 1,2,3-benzotriazin-4-one derivatives containing 4,5-dihydrothiazole-2-thiol were synthesized and characterized by 1H NMR, 13C NMR, 19F NMR and HRMS. The bioassay results showed that compounds 3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)-7-methoxybenzo[d][1–3]triazin-4(3H)-one, 3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)-6-nitrobenzo[d][1–3]triazin-4(3H)-one, 7-chloro-3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)benzo[d][1–3]triazin-4(3H)-one exhibited good control efficacy against the cucumber root-knot nematode disease caused by Meloidogyne incognita at the concentration of 10.0 mg L?1 in vivo. Compound 7-chloro-3-(3-((4,5-dihydrothiazol-2-yl)thio)propyl)benzo[d][1–3]triazin-4(3H)-one showed excellent nematicidal activity with inhibition 68.3% at a concentration of 1.0 mg L?1. It suggested that the structure of 1,2,3-benzotriazin-4-one containing 4,5-dihydro-thiazole-2-thiol could be optimized further.

Scaffold hopping and optimisation of 3’,4’-dihydroxyphenyl- containing thienopyrimidinones: synthesis of quinazolinone derivatives as novel allosteric inhibitors of HIV-1 reverse transcriptase-associated ribonuclease H

Tocco, Graziella,Esposito, Francesca,Caboni, Pierluigi,Laus, Antonio,Beutler, John A.,Wilson, Jennifer A.,Corona, Angela,Le Grice, Stuart F. J.,Tramontano, Enzo

, p. 1953 - 1963 (2020/11/09)

Bioisosteric replacement and scaffold hopping are powerful strategies in drug design useful for rationally modifying a hit compound towards novel lead therapeutic agents. Recently, we reported a series of thienopyrimidinones that compromise dynamics at the p66/p51 HIV-1 reverse transcriptase (RT)-associated Ribonuclease H (RNase H) dimer interface, thereby allosterically interrupting catalysis by altering the active site geometry. Although they exhibited good submicromolar activity, the isosteric replacement of the thiophene ring, a potential toxicophore, is warranted. Thus, in this article, the most active 2-(3,4-dihydroxyphenyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one 1 was selected as the hit scaffold and several isosteric substitutions of the thiophene ring were performed. A novel series of highly active RNase H allosteric quinazolinone inhibitors was thus obtained. To determine their target selectivity, they were tested against RT-associated RNA-dependent DNA polymerase (RDDP) and integrase (IN). Interestingly, none of the compounds were particularly active on (RDDP) but many displayed micromolar to submicromolar activity against IN.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1882-71-9