Welcome to LookChem.com Sign In|Join Free

CAS

  • or

19398-86-8

Post Buying Request

19398-86-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

19398-86-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 19398-86-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,9,3,9 and 8 respectively; the second part has 2 digits, 8 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 19398-86:
(7*1)+(6*9)+(5*3)+(4*9)+(3*8)+(2*8)+(1*6)=158
158 % 10 = 8
So 19398-86-8 is a valid CAS Registry Number.
InChI:InChI=1/C10H20/c1-3-5-7-9-10-8-6-4-2/h5,7H,3-4,6,8-10H2,1-2H3/b7-5-

19398-86-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 18, 2017

Revision Date: Aug 18, 2017

1.Identification

1.1 GHS Product identifier

Product name CIS-3-DECENE

1.2 Other means of identification

Product number -
Other names 3-Decene, (Z)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:19398-86-8 SDS

19398-86-8Downstream Products

19398-86-8Relevant articles and documents

Anti-Markovnikov Hydroheteroarylation of Unactivated Alkenes with Indoles, Pyrroles, Benzofurans, and Furans Catalyzed by a Nickel-N-Heterocyclic Carbene System

Schramm, York,Takeuchi, Makoto,Semba, Kazuhiko,Nakao, Yoshiaki,Hartwig, John F.

supporting information, p. 12215 - 12218 (2015/10/12)

We report the catalytic addition of C-H bonds at the C2 position of heteroarenes, including pyrroles, indoles, benzofurans, and furans, to unactivated terminal and internal alkenes. The reaction is catalyzed by a combination of Ni(COD)2 and a sterically hindered, electron-rich N-heterocyclic carbene ligand or its analogous Ni(NHC)(arene) complex. The reaction is highly selective for anti-Markovnikov addition to α-olefins, as well as for the formation of linear alkylheteroarenes from internal alkenes. The reaction occurs with substrates containing ketones, esters, amides, boronate esters, silyl ethers, sulfonamides, acetals, and free amines.

Stabilization of long-chain intermediates in solution. octyl radicals and cations

Teodorovi?, Aleksandar V.,Badjuk, Dalibor M.,Stevanovi?, Nenad,Pavlovi?, Radoslav Z.

, p. 19 - 24 (2013/06/26)

The rearrangements of 1-octyl, 1-decyl and 1-tridecyl intermediates obtained from thermal lead(IV) acetate (LTA) decarboxylation of nonanoic, undecanoic and tetradecanoic acid were investigated experimentally through analysis and distribution of the products. The relationships between 1,5-, 1,6- and possibly existing 1,7-homolytic hydrogen transfer in 1-octyl-radical, as well as successive 1,2-hydride shift in corresponding cation have been computed via Monte-Carlo method. Taking into account that ratios of 1,5-/1,6-homolytic rearrangements in 1-octyl- and 1-tridecyl radical are approximately the same, the simulation shows very low involvement of 1,7-hydrogen rearrangement (1,5-/1,6-/1,7-hydrogen rearrangement = 85:31:1) in 1-octyl radical.

TRANSITION METAL COMPLEXES

-

Page/Page column 90-93, (2008/06/13)

A transition metal complex which is a bis-arylimine pyridine MXn complex, comprising a bis-arylimine pyridine ligand having the formula (I), wherein R1-R5, R7-R9, R12 and R14 are each, independently, hydrogen, optionally substituted hydrocarbyl, an inert functional group, or any two of R1-R3 and R7-R9 vicinal to one another taken together may form a ring, and R6 is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R7 or R4 to form a ring, R10 is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R9 or R4 to form a ring, R11 is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R12 or R5 to form a ring, R15 is hydrogen, optionally substituted hydrocarbyl, an inert functional group, or taken together with R14 or R5 to form a ring, provided that R13 and at least one of R12 and R14 are independently selected from optionally substituted C1-C30 alkyl, optionally substituted C4-C30 alkyloxy, halogen and optionally substituted C5-C20 aryl, or R13 taken together with R12 or R14 form a ring, or R12 taken together with R11 form a ring and R14 taken together with R15 form a ring, and provided that at least one of R12, R13 and R14 is optionally substituted C4-C30 alkyloxy; M is a transition metal atom in particular selected from Ti, V, Cr, Mn, Fe, Co, Ni, Pd, Rh, Ru, Mo, Nb, Zr, Hf, Ta, W, Re, Os, Ir or Pt; n matches the formal oxidation state of the transition metal atom M; and X is halide, optionally substituted hydrocarbyl, alkoxide, amide, or hydride. The transition metal complexes of the present invention, their complexes with non-coordinating anions and catalyst systems containing such complexes have good solubility in non-polar media and chemically inert non--polar solvents especially aromatic hydrocarbon solvents. The catalyst systems can be used for a wide range of (co-)oligomerization, polymerization and dimerization reactions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 19398-86-8