19812-63-6Relevant articles and documents
-
Ernest
, p. 1470,1472 (1956)
-
Influence of positional isomers on the macroscale and nanoscale architectures of aggregates of racemic hydroxyoctadecanoic acids in their molecular gel, dispersion, and solid states
Abraham, Shibu,Lan, Yaqi,Lam, Ricky S. H.,Grahame, Douglas A. S.,Kim, Jennifer Jae Hee,Weiss, Richard G.,Rogers, Michael A.
experimental part, p. 4955 - 4964 (2012/07/13)
Inter/intramolecular hydrogen bonding of a series of hydroxystearic acids (HSAs) are investigated. Self-assembly of molecular gels obtained from these fatty acids with isomeric hydroxyl groups is influenced by the position of the secondary hydroxyl group. 2-Hydroxystearic acid (2HSA) does not form a molecular dimer, as indicated by FT-IR, and growth along the secondary axis is inhibited because the secondary hydroxyl group is unable to form intermolecular H-bonds. As well, the XRD long spacing is shorter than the dimer length of hydroxystearic acid. 3-Hydroxystearic acid (3HSA) forms an acyclic dimer, and the hydroxyl groups are unable to hydrogen bond, preventing the crystal structure from growing along the secondary axis. Finally, isomers 6HSA, 8HSA, 10HSA, 12HSA, and 14HSA have similar XRD and FT-IR patterns, suggesting that these molecules all self-assemble in a similar fashion. The monomers form a carboxylic cyclic dimer, and the secondary hydroxyl group promotes growth along the secondary axis.
Pyridinecarboxamide derivatives
-
, (2008/06/13)
Pyridinecarboxamide derivatives of the formula STR1 (wherein n represents an integer of 14-18, and R represents a hydrogen atom or a straight or branched C1 -C4 alkyl group) or physiologically acceptable salts thereof. The compounds have excellent inhibiting activity of cerebral edema, especially ischemic cerebral edema, and inhibiting activity of delayed death of neuronal cells (an inhibiting activity of Ca-influx in neuronal cells). Cerebral edema is a pathologic condition accompanying cerebrovascular disorders, especially the acute stage of cerebrovascular disorders and then the compounds are useful as an agent for inhibiting cerebral edema or a therapeutic agent for cerebrovascular disorders. Moreover, the compounds have no hypotensive action which is considered to be side-effect in treating the acute stage cerebrovascular disorders and hardly show a behavior suppressing action so that they are an excellent therapeutic agent for, in particular, the acute stage cerebrovascular disorders. Moreover, the compounds show a cerebral protective activity (an anti-anoxic activity), an increasing activity of cerebral blood flow, and an inhibiting activity of lipid peroxidation and these activities may lead to the increased utility as a therapeutic agent for cerebrovascular disorders.