Welcome to LookChem.com Sign In|Join Free

CAS

  • or

1984-19-6

Post Buying Request

1984-19-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

1984-19-6 Usage

General Description

2-Isocyanopyridine is a chemical compound with the molecular formula C6H4N2O. It is a highly reactive and versatile compound that is used in the synthesis of various pharmaceuticals and agrochemicals. It is a key building block in the production of pyridine-based compounds, which are widely used in the development of new drugs and pesticides. 2-Isocyanopyridine is a colorless liquid with a strong, pungent odor and is highly flammable. It is also known to be toxic if ingested or inhaled, and can cause irritation to the skin and eyes. Proper handling and storage procedures should be followed to ensure safe use of this chemical.

Check Digit Verification of cas no

The CAS Registry Mumber 1984-19-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 1,9,8 and 4 respectively; the second part has 2 digits, 1 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 1984-19:
(6*1)+(5*9)+(4*8)+(3*4)+(2*1)+(1*9)=106
106 % 10 = 6
So 1984-19-6 is a valid CAS Registry Number.

1984-19-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-Isocyanopyridine

1.2 Other means of identification

Product number -
Other names 2-pyridinylisonitrile

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:1984-19-6 SDS

1984-19-6Relevant articles and documents

Isocyanide 2.0

Ahmadian-Moghaddam, Maryam,D?mling, Alexander,Patil, Pravin

supporting information, p. 6902 - 6911 (2020/11/09)

The isocyanide functionality due to its dichotomy between carbenoid and triple bond characters, with a nucleophilic and electrophilic terminal carbon, exhibits unusual reactivity in organic chemistry exemplified for example in the Ugi reaction. Unfortunately, the over proportional use of only a few isocyanides hampers novel discoveries about the fascinating reactivity of this functional group. The synthesis of a broad range of isocyanides with multiple functional groups is lengthy, inefficient, and exposes the chemist to hazardous fumes. Here we present an innovative isocyanide synthesis overcoming these problems by avoiding the aqueous workup which we exemplify by parallel synthesis from a 0.2 mmol scale performed in 96-well microtiter plates up to a 0.5 mol multigram scale. The advantages of our methodology include an increased synthesis speed, very mild conditions giving access to hitherto unknown or highly reactive classes of isocyanides, rapid access to large numbers of functionalized isocyanides, increased yields, high purity, proven scalability over 5 orders of magnitude, increased safety and less reaction waste resulting in a highly reduced environmental footprint. For example, the hitherto believed to be unstable 2-isocyanopyrimidine, 2-acylphenylisocyanides and even o-isocyanobenzaldehyde could be accessed on a preparative scale and their chemistry was explored. Our new isocyanide synthesis will enable easy access to uncharted isocyanide space and will result in many discoveries about the unusual reactivity of this functional group. This journal is

Selective Gold-Catalysed Synthesis of Cyanamides and 1-Substituted 1H-Tetrazol-5-Amines from Isocyanides

?koch, Karel,Císa?ová, Ivana,?těpni?ka, Petr

supporting information, p. 13788 - 13791 (2018/09/14)

The newly discovered gold-catalysed reaction of isocyanides with hydrazoic acid generated in situ from trimethylsilyl azide and methanol (or, alternatively, from NaN3/AcOH) produces either cyanamides or 1-substituted 1H-tetrazol-5-amines, depending on the amount of available HN3. The reaction proceeds selectively and in generally high yields of either product, thus providing a particularly convenient access to a wide range of substituted 1H-tetrazol-5-amines that are rather difficult to access otherwise.

Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo[1,2-a]pyridine symbiotic prototypes

Lacerda, Renata B.,de Lima, Cleverton K.F.,da Silva, Leandro L.,Romeiro, Nelilma C.,Miranda, Ana Luisa P.,Barreiro, Eliezer J.,Fraga, Carlos A.M.

experimental part, p. 74 - 84 (2011/03/17)

We describe herein the design, synthesis and pharmacological evaluation of novel 3-arylamine-imidazo[1,2-a]pyridine derivatives structurally designed as novel symbiotic prototypes presenting analgesic and anti-inflammatory properties. The derivatives obtained were submitted to in vivo assays of nociception, hyperalgesia and inflammation, and to in vitro assays of human PGHS-2 inhibition. These assays allowed the identification of compound LASSBio-1135 (3a) as an anti-inflammatory and analgesic symbiotic prototype. This compound inhibited moderately the human PGHS-2 enzyme activity (IC50 = 18.5 μM) and reverted the capsaicin-induced thermal hyperalgesia (100 μmol/kg, po) similarly to p38 MAPK inhibitor SB-203580 (2). Additionally, LASSBio-1135 (3a) presented activity similar to celecoxib (1) regarding the reduction of the carrageenan-induced rat paw edema (33% of inhibition at 100 μmol/kg, po). We also discovered derivatives LASSBio-1140 (3c) and LASSBio-1141 (3e) as analgesic and anti-inflammatory prototypes, which were able to attenuate the capsaicin-induced thermal hyperalgesia (100 μmol/kg, po) and reduce the carrageenan-induced paw edema (ED50 = 11.5 μmol/kg (3.3 mg/kg) and 14.5 μmol/kg (4.1 mg/kg), respectively), being both more active than celecoxib (1), despite the fact that their effects involve a different mechanism of action. Additionally, derivative LASSBio-1145 (3j) showed remarkable analgesic (ED50 = 22.7 μmol/kg (8.9 mg/kg)) and anti-inflammatory (ED50 = 8.7 μmol/kg (3.4 mg/kg)) profile in vivo (100 μmol/kg; po), in AcOH-induced abdominal constrictions in mice and carrageenan-induced rat paw edema models, respectively, being a novel orally-active anti-inflammatory drug candidate that acts as a selective PGHS-2 inhibitor (IC50 = 2.8 μM).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 1984-19-6