Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2077-33-0

Post Buying Request

2077-33-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2077-33-0 Usage

Physical state

Colorless to pale yellow liquid

Aroma

Sweet, floral

Common uses

Fragrance ingredient in perfumes and cosmetics, flavoring agent in food products, scent enhancer in air fresheners and cleaning products

Natural occurrence

Essential oils of cinnamon and storax

Production

Natural and synthetic

Safety

Considered safe for use in low concentrations, but can cause skin and eye irritation and should be used in well-ventilated areas.

Check Digit Verification of cas no

The CAS Registry Mumber 2077-33-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,0,7 and 7 respectively; the second part has 2 digits, 3 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 2077-33:
(6*2)+(5*0)+(4*7)+(3*7)+(2*3)+(1*3)=70
70 % 10 = 0
So 2077-33-0 is a valid CAS Registry Number.

2077-33-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-methyl-2-prop-1-enylbenzene

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2077-33-0 SDS

2077-33-0Relevant articles and documents

Iron Catalyzed Double Bond Isomerization: Evidence for an FeI/FeIII Catalytic Cycle

Woof, Callum R.,Durand, Derek J.,Fey, Natalie,Richards, Emma,Webster, Ruth L.

supporting information, p. 5972 - 5977 (2021/03/17)

Iron-catalyzed isomerization of alkenes is reported using an iron(II) β-diketiminate pre-catalyst. The reaction proceeds with a catalytic amount of a hydride source, such as pinacol borane (HBpin) or ammonia borane (H3N?BH3). Reactivity with both allyl arenes and aliphatic alkenes has been studied. The catalytic mechanism was investigated by a variety of means, including deuteration studies, Density Functional Theory (DFT) and Electron Paramagnetic Resonance (EPR) spectroscopy. The data obtained support a pre-catalyst activation step that gives access to an η2-coordinated alkene FeI complex, followed by oxidative addition of the alkene to give an FeIII intermediate, which then undergoes reductive elimination to allow release of the isomerization product.

Nickel-Catalyzed Allylic C(sp2)–H Activation: Stereoselective Allyl Isomerization and Regiospecific Allyl Arylation of Allylarenes

Wu, Qiang,Wang, Lanlan,Jin, Rizhe,Kang, Chuanqing,Bian, Zheng,Du, Zhijun,Ma, Xiaoye,Guo, Haiquan,Gao, Lianxun

, p. 5415 - 5422 (2016/11/22)

Stereoselective allyl isomerization and regiospecific allyl arylation reactions of allylarenes with a catalytic system comprising nickel(II) with an aryl Grignard reagent were studied. Both reactions are triggered by allylic internal C(sp2)–H activation by in-situ-formed Ni0, which is inserted into the C–H bond at the 2-position of the allyl moiety without a directing group. The isomerization of allylarene to 1-propenylarene favors the E isomer and proceeds with quantitative conversion. The arylation takes place through oxidative cross-coupling of allylarenes with excess Grignard reagent. It occurs regiospecifically at the position of C(sp2)–H activation and represents a new method for the synthesis of 1,1-disubstituted olefins. The results of deuterium labeling experiments reveal an alkenyl/alkyl mechanism involving allylic internal C(sp2)–H activation and multiple intermolecular 1,2-, 1,3-, and 2,3-hydride shifts. These methods represent new approaches to the functionalization of olefins, and the mechanistic investigations could be helpful for the discovery and design of new strategies for olefin functionalization.

Wittig reaction: Role of steric effects in explaining the prevalent formation of Z olefin from nonstabilized ylides

Baccolini, Graziano,Delpivo, Camilla,Micheletti, Gabriele

, p. 1291 - 1302 (2012/11/13)

For understanding the mechanism involved in the Wittig reaction, it is important to know the factors which influence the stability of 1,2-oxaphosphetane intermediates with pentacoordinate phosphorus; in these intermediates, the steric factor plays a predominant role. Studying the Wittig reaction between nonstabilized ylides and different aldehydes, we noted that the stereochemical outcome driving toward Z-olefin formation was influenced only by different steric factors. The proposed mechanism differs from those previously reported because it underlines the fundamental role of the two cis/trans oxaphosphetane intermediates with the oxygen atom in equatorial position.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2077-33-0