Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2149-82-8

Post Buying Request

2149-82-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 2,6-dioxo-3-(5-O-phosphonopentofuranosyl)-1,2,3,6-tetrahydropyrimidine-4-carboxylic acid

    Cas No: 2149-82-8

  • USD $ 18.0-20.0 / Kilogram

  • 1 Kilogram

  • 10000 Metric Ton/Year

  • EAST CHEMSOURCES LIMITED
  • Contact Supplier

2149-82-8 Usage

General Description

3-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]-2,6-dioxopyrimidine-4-carboxylic acid is a complex chemical compound that belongs to the category of pyrimidine-4-carboxylic acids. It contains a phosphonooxymethyl group attached to a hydroxyl group on a five-membered oxolan ring. 3-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(phosphonooxymethyl)oxolan-2-yl]-2,6-dioxopyrimidine-4-carboxylic acid is a derivative of pyrimidine and has multiple functional groups including carboxylic acid and hydroxyl groups. Its structure suggests potential interactions with biological systems and may have applications in pharmaceuticals or chemical research. Further study and analysis are necessary to fully understand the properties and potential uses of this chemical compound.

Check Digit Verification of cas no

The CAS Registry Mumber 2149-82-8 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,1,4 and 9 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 2149-82:
(6*2)+(5*1)+(4*4)+(3*9)+(2*8)+(1*2)=78
78 % 10 = 8
So 2149-82-8 is a valid CAS Registry Number.
InChI:InChI=1/C10H13N2O11P/c13-5-1-3(9(16)17)12(10(18)11-5)8-7(15)6(14)4(23-8)2-22-24(19,20)21/h1,4,6-8,14-15H,2H2,(H,16,17)(H,11,13,18)(H2,19,20,21)

2149-82-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name orotidine 5'-phosphate

1.2 Other means of identification

Product number -
Other names Orotidine 5‘-phosphate

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2149-82-8 SDS

2149-82-8Relevant articles and documents

-

Moffatt

, p. 1118,1122 (1963)

-

Loop residues and catalysis in OMP synthase

Wang, Gary P.,Hansen, Michael Riis,Grubmeyer, Charles

experimental part, p. 4406 - 4415 (2012/09/07)

Residue-to-alanine mutations and a two-amino acid deletion have been made in the highly conserved catalytic loop (residues 100-109) of Salmonella typhimurium OMP synthase (orotate phosphoribosyltransferase, EC 2.4.2.10). As described previously, the K103A mutant enzyme exhibited a 104-fold decrease in kcat/KM for PRPP; the K100A enzyme suffered a 50-fold decrease. Alanine mutations at His105 and Glu107 produced 40- and 7-fold decreases in kcat/KM, respectively, and E101A, D104A, and G106A were slightly faster than the wild-type (WT) in terms of kcat, with minor effects on kcat/KM. Equilibrium binding of OMP or PRPP in binary complexes was affected little by loop mutation, suggesting that the energetics of ground-state binding have little contribution from the catalytic loop, or that a favorable binding energy is offset by costs of loop reorganization. Pre-steady-state kinetics for mutants showed that K103A and E107A had lost the burst of product formation in each direction that indicated rapid on-enzyme chemistry for WT, but that the burst was retained by H105A. Δ102Δ106, a loop-shortened enzyme with Ala102 and Gly106 deleted, showed a 104-fold reduction of kcat but almost unaltered KD values for all four substrate molecules. The 20% (i.e., 1.20) intrinsic [1′-3H]OMP kinetic isotope effect (KIE) for WT is masked because of high forward and reverse commitment factors. K103A failed to express intrinsic KIEs fully (1.095 ± 0.013). In contrast, H105A, which has a smaller catalytic lesion, gave a [1′-3H]OMP KIE of 1.21 ± 0.0005, and E107A (1.179 ± 0.0049) also gave high values. These results are interpreted in the context of the X-ray structure of the complete substrate complex for the enzyme [Grubmeyer, C., Hansen, M. R., Fedorov, A. A., and Almo, S. C. (2012) Biochemistry 51 (preceding paper in this issue, DOI 10.1021/bi300083p)]. The full expression of KIEs by H105A and E107A may result from a less secure closure of the catalytic loop. The lower level of expression of the KIE by K103A suggests that in these mutant proteins the major barrier to catalysis is successful closure of the catalytic loop, which when closed, produces rapid and reversible catalysis. (Graph Presented).

A substantial oxygen isotope effect at O2 in the OMP decarboxylase reaction: Mechanistic implications

Wepukhulu, Wickliffe O.,Smiley, Vanessa L.,Vemulapalli, Bhargavi,Smiley, Jeffrey A.,Phillips, Linda M.,Lee, Jeehiun K.

experimental part, p. 4533 - 4541 (2009/03/12)

Orotidine-5′-monophosphate decarboxylase (OMP decarboxylase, ODCase) catalyzes the decarboxylation of orotidine-5′-monophosphate (OMP) to uridine-5′-monophosphate (UMP). Despite extensive enzymological, structural, and computational studies, the mechanism of ODCase remains incompletely characterized. Herein, carbon kinetic isotope effects were measured for both the natural abundance substrate and a substrate mixture synthesized for the purpose of carrying out the remote double label isotope effect procedure, with O2 of the substrate as the remote position. The carbon kinetic isotope effect on enzymatic decarboxylation of this substrate mix was measured to be 1.0199 ± 0.0007, compared to the value of 1.0289 ± 0.0009 for natural abundance OMP, revealing an 18O2 isotope effect of 0.991 ± 0.001. This value equates to an intrinsic isotope effect of approximately 0.983, using a calculated commitment factor derived from previous isotope effect data. The measured 18O2 isotope effect requires a mechanism with one or more enzymatic processes, including binding and/or chemistry, that contribute to this substantial inverse isotope effect. 18O2 kinetic isotope effects were calculated for four proposed mechanisms: decarboxylation preceded by proton transfer to 1) O2; 2) O4; and 3) C5; and 4) decarboxylation without a preceding protonation step. A mechanism involving no pre-decarboxylation step does not appear to have any steps with the necessary substantial inverse 18O2 effect, thus calling into question any mechanism involving simple direct decarboxylation. Protonation at O2, O4, or C5 are all calculated to proceed with inverse 18O2 effects, and could contribute to the experimentally measured value. Recent crystal structures indicate that O2 of the substrate appears to be involved in an intricate bonding arrangement involving the substrate phosphoryl group, an enzyme Gln side chain, and a bound water molecule; this interaction likely contributes to the observed isotope effect.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2149-82-8