21679-14-1Relevant articles and documents
Practical Synthesis of Fludarabine and Nelarabine
Bai, Jiang,Ding, Haixin,Liu, Jiang,Ouyang, Wenliang,Shen, Chunyang,Xiao, Qiang
, p. 417 - 423 (2020/01/23)
A new practical synthesis strategy has been developed to access the β- d -arabinofuranosyl purine nucleosides fludarabine and nelarabine. In our approach, an ortho -alkyne benzoyl ester is transiently introduced as a neighbouring-participation group in Vorbrüggen glycosylation to afford the corresponding β-nucleoside exclusively. The latter was further removed efficiently by using freshly prepared Ph 3 PAuOTFA to give the corresponding 2′-OH nucleosides without transesterification. After reversion of the configuration of 2′-OH and deprotection, fludarabine and nelarabine were obtained in high yield and purity.
Synthesis method of fludarabine phosphate
-
Paragraph 0041-0043; 0056-0060, (2020/08/22)
The invention provides a synthesis method of fludarabine phosphate, and the synthesis route is as follows: with vidarabine as a starting raw material, fludarabine is obtained through upper protection,nitrification, fluorination denitration and deprotection, so that the fludarabine is prepared by adopting a brand-new synthesis route; meanwhile, by improving the process of phosphorylation and refining of fludarabine, the reaction time is shortened, the generation of by-products is reduced, and the product quality is improved. The method has the following advantages: 1, the initial raw materialis beta-configuration, isomer separation is avoided, and the yield is improved; raw materials are easy to obtain, the route is simple, and the price is low; 3, salification and column-passing purification and separation are avoided, so that the method is suitable for industrialization.
Synthesis method of fludarabine and nelarabine
-
, (2020/01/11)
The present invention discloses a synthesis method of fludarabine and nelarabine. The method is prepared from a ribofuranose derivative as a raw material, an o-alkynyl benzoate is introduced at a 2-position hydroxyl group to obtain a key glycosyl donor, the key glycosyl donor and purine bases are subjected to a coupling reaction using a Vorbruggen glycosylation reaction to highly efficiently construct beta-nucleoside bonds, under catalysis of a gold catalyst, 2'-position ester groups are selectively removed to obtain important furyl ribonucleotide, and a bare 2' hydroxyl group is then subjected to two-step reactions of hydroxyl inversion and deprotection to respectively obtain fludarabine and nelarabine. The synthesis strategy has characteristics of being simple in operation, simple and easy to obtain the raw materials, easy in separation of products, high in reaction yield, etc., and has relatively good prospects for popularization and application.
Enzymatic Synthesis of Therapeutic Nucleosides using a Highly Versatile Purine Nucleoside 2’-DeoxyribosylTransferase from Trypanosoma brucei
Pérez, Elena,Sánchez-Murcia, Pedro A.,Jordaan, Justin,Blanco, María Dolores,Manche?o, José Miguel,Gago, Federico,Fernández-Lucas, Jesús
, p. 4406 - 4416 (2018/09/14)
The use of enzymes for the synthesis of nucleoside analogues offers several advantages over multistep chemical methods, including chemo-, regio- and stereoselectivity as well as milder reaction conditions. Herein, the production, characterization and utilization of a purine nucleoside 2’-deoxyribosyltransferase (PDT) from Trypanosoma brucei are reported. TbPDT is a dimer which displays not only excellent activity and stability over a broad range of temperatures (50–70 °C), pH (4–7) and ionic strength (0–500 mM NaCl) but also an unusual high stability under alkaline conditions (pH 8–10). TbPDT is shown to be proficient in the biosynthesis of numerous therapeutic nucleosides, including didanosine, vidarabine, cladribine, fludarabine and nelarabine. The structure-guided replacement of Val11 with either Ala or Ser resulted in variants with 2.8-fold greater activity. TbPDT was also covalently immobilized on glutaraldehyde-activated magnetic microspheres. MTbPDT3 was selected as the best derivative (4200 IU/g, activity recovery of 22 %), and could be easily recaptured and recycled for >25 reactions with negligible loss of activity. Finally, MTbPDT3 was successfully employed in the expedient synthesis of several nucleoside analogues. Taken together, our results support the notion that TbPDT has good potential as an industrial biocatalyst for the synthesis of a wide range of therapeutic nucleosides through an efficient and environmentally friendly methodology.
Synthesis process of fludarabine base
-
Paragraph 0012-0025, (2018/11/10)
The invention provides a synthesis process of fludarabine base. The synthesis process comprises selecting raw materials, synthesizing an intermediate, and synthesizing fludarabine base. The synthesisprocess has the beneficial effects that the source of the raw materials is widely available, the cost of the raw materials is low, the synthesis process is suitable for large-scale production and hassimple synthesis steps, fewer harmful substances are discharged in synthesis, and the synthesis process is safe and environment-friendly, has good use effect and can be promoted.
The arsenolysis reaction in the biotechnological method of synthesis of modified purine β-D-arabinonucleosides
Konstantinova,Fateev,Miroshnikov
, p. 372 - 380 (2016/08/03)
We found a unique property of E. coli purine nucleoside phosphorylases to selectively perform the arsenolysis reaction of ribonucleosides in their active site without affecting β-D-arabinonucleosides. In the synthesis of modified β-D-arabinonucleosides from the corresponding ribonucleosides, the catalytical amount of sodium arsenate in the transglycosylation reaction provided a 95 to 98% conversion rate. Such an approach was shown to simplify the composition of the reaction mixtures and facilitate the isolation of the target nucleosides, particularly, vidarabine, fludarabine, and nelarabine.
Simple modification to obtain high quality fludarabine
Kshirsagar, Siddheshwar W.,Deshpande, Mangesh S.,Sonawane, Swapnil P.,Maikap, Golak C.,Gurjar, Mukund K.
experimental part, p. 840 - 842 (2012/07/28)
A simple and improved debenzylation process is described to obtain fludarabine in greater than 99.8% purity and 90-95% yield.
Use of Citrobacter koseri whole cells for the production of arabinonucleosides: A larger scale approach
Nóbile, Matías,Médici, Rosario,Terreni, Marco,Lewkowicz, Elizabeth S.,Iribarren, Adolfo M.
, p. 2182 - 2188 (2013/02/25)
Purine arabinosides are well known antiviral and antineoplastic drugs. Since their chemical synthesis is complex, time-consuming, and polluting, enzymatic synthesis provides an advantageous alternative. In this work, we describe the microbial whole cell synthesis of purine arabinosides through nucleoside phosphorylase-catalyzed transglycosylation starting from their pyrimidine precursors. By screening of our microbial collection, Citrobacter koseri (CECT 856) was selected as the best biocatalyst for the proposed biotransformation. In order to enlarge the scale of the transformations to 150 mL for future industrial applications, the biocatalyst immobilization by entrapment techniques and its behavior in different reactor configurations, considering both batch and continuous processes, were analyzed. C. koseri immobilized in agarose could be used up to 68 times and the storage stability was at least 9 months. By this approach, fludarabine (58% yield in 14 h), vidarabine (71% yield in 26 h) and 2,6-diaminopurine arabinoside (77% yield in 24 h), were prepared.
THERAPEUTIC FOR HEPATIC CANCER
-
, (2011/02/18)
A novel pharmaceutical composition for treating or preventing hepatocellular carcinoma and a method of treatment are provided. A pharmaceutical composition for treating or preventing liver cancer is obtained by combining a chemotherapeutic agent with an anti-glypican 3 antibody. Also disclosed is a pharmaceutical composition for treating or preventing liver cancer which comprises as an active ingredient an anti-glypican 3 antibody for use in combination with a chemotherapeutic agent, or which comprises as an active ingredient a chemotherapeutic agent for use in combination with an anti-glypican 3 antibody. Using the chemotherapeutic agent and the anti-glypican 3 antibody in combination yields better therapeutic effects than using the chemotherapeutic agent alone, and mitigates side effects that arise from liver cancer treatment with the chemotherapeutic agent.
METHOD FOR THE MANUFACTURE OF 2-FLUORO-ARA-ADENINE
-
Page/Page column 9, (2010/12/17)
A method is described for the manufacture of pure 2-fluoro-ara-adenine of Formula (I) from 2-fluoro-ara-adenine triacetate using potassium carbonate (K2CO3), wherein the 2-fluoro-ara-adenine has a reduced dimer contents, as well as the compound 2-fluoro-ara-adenine having a dimer contents of ≤ 0,3 %.