244767-67-7Relevant articles and documents
Ex situ generation of stoichiometric HCN and its application in the Pd-catalysed cyanation of aryl bromides: Evidence for a transmetallation step between two oxidative addition Pd-complexes
Kristensen, Steffan K.,Eikeland, Espen Z.,Taarning, Esben,Lindhardt, Anders T.,Skrydstrup, Troels
, p. 8094 - 8105 (2017/11/27)
A protocol for the Pd-catalysed cyanation of aryl bromides using near stoichiometric and gaseous hydrogen cyanide is reported for the first time. A two-chamber reactor was adopted for the safe liberation of ex situ generated HCN in a closed environment, which proved highly efficient in the Ni-catalysed hydrocyanation as the test reaction. Subsequently, this setup was exploited for converting a range of aryl and heteroaryl bromides (28 examples) directly into the corresponding benzonitriles in high yields, without the need for cyanide salts. Cyanation was achieved employing the Pd(0) precatalyst, P(tBu)3-Pd-G3 and a weak base, potassium acetate, in a dioxane-water solvent mixture. The methodology was also suitable for the synthesis of 13C-labelled benzonitriles with ex situ generated 13C-hydrogen cyanide. Stoichiometric studies with the metal complexes were undertaken to delineate the mechanism for this catalytic transformation. Treatment of Pd(P(tBu)3)2 with H13CN in THF provided two Pd-hydride complexes, (P(tBu)3)2Pd(H)(13CN), and [(P(tBu)3)Pd(H)]2Pd(13CN)4, both of which were isolated and characterised by NMR spectroscopy and X-ray crystal structure analysis. When the same reaction was performed in a THF : water mixture in the presence of KOAc, only (P(tBu)3)2Pd(H)(13CN) was formed. Subjection of this cyano hydride metal complex with the oxidative addition complex (P(tBu)3)Pd(Ph)(Br) in a 1 : 1 ratio in THF led to a transmetallation step with the formation of (P(tBu)3)2Pd(H)(Br) and 13C-benzonitrile from a reductive elimination step. These experiments suggest the possibility of a catalytic cycle involving initially the formation of two Pd(ii)-species from the oxidative addition of LnPd(0) into HCN and an aryl bromide followed by a transmetallation step to LnPd(Ar)(CN) and LnPd(H)(Br), which both reductively eliminate, the latter in the presence of KOAc, to generate the benzonitrile and LnPd(0).
From human immunodeficiency virus non-nucleoside reverse transcriptase inhibitors to potent and selective antitrypanosomal compounds
Venkatraj, Muthusamy,Arin, Kevin K.,Heeres, Jan,Joossens, Jurgen,Diri, Bertrand,Lyssens, Sophie,Michiels, Johan,Cos, Paul,Lewi, Paul J.,Vanham, Guido,Maes, Louis,Van Der Veken, Pieter,Augustyns, Koen
supporting information, p. 5241 - 5248 (2014/12/11)
The presence of a structural recognition motif for the nucleoside P2 transporter in a library of pyrimidine and triazine non-nucleoside HIV-1 reverse transcriptase inhibitors, prompted for the evaluation of antitrypanosomal activity. It was demonstrated that the structure-activity relationship for anti-HIV and antitrypanosomal activity was different. Optimization in the diaryl triazine series led to 6-(mesityloxy)-N2-phenyl-1,3,5-triazine-2,4-diamine (69), a compound with potent in vitro and moderate in vivo antitrypanosomal activity.
Optimization of diarylazines as anti-HIV agents with dramatically enhanced solubility
Bollini, Mariela,Cisneros, José A.,Spasov, Krasimir A.,Anderson, Karen S.,Jorgensen, William L.
, p. 5213 - 5216 (2013/09/12)
Non-nucleoside inhibitors of HIV-1 reverse transcriptase are reported that have ca. 100-fold greater solubility than the structurally related drugs etravirine and rilpivirine, while retaining high anti-viral activity. The solubility enhancements come from strategic placement of a morpholinylalkoxy substituent in the entrance channel of the NNRTI binding site. Compound 4d shows low-nanomolar activity similar to etravirine towards wild-type HIV-1 and key viral variants.
Prodrugs of hiv replication inhibiting pyrimidines
-
, (2008/06/13)
The present invention concerns compounds of formula (A1)(A2)N—R1 (I),the N-oxide forms, the pharmaceutically acceptable addition salts, the quaternary amines and stereochemically isomeric forms thereof, wherein R1 is substituted C1-6alkyl; —S(=O)—R8; —S(=O)2—R8; C7-12alkylcarbonyl; optionally substituted C1-6alkyloxycarbonylC1-6alkylcarbonyl; with R8 being C1-6alkyl, aryl1 or Het1; (A1)(A2)N— is the covalently bonded form of the corresponding intermediate of formula (A1)(A2)N—H, which is a HIV replication inhibiting pyrimidine of formula 1
RATE-CONTROLLED PARTICLES
-
, (2008/06/13)
Rate-controlled particles, comprising compounds of the formula as a solid dispersion.
Evolution of anti-HIV drug candidates. Part 3: Diarylpyrimidine (DAPY) analogues
Ludovici, Donald W.,De Corte, Bart L.,Kukla, Michael J.,Ye, Hong,Ho, Chih Y.,Lichtenstein, Mark A.,Kavash, Robert W.,Andries, Koen,De Bethune, Marie-Pierre,Azijn, Hilde,Pauwels, Rudi,Lewi, Paul J.,Heeres, Jan,Koymans, Lucien M.H.,De Jonge, Marc R.,Van Aken, Koen J.A.,Daeyaert, Frederik F.D.,Das, Kalyan,Arnold, Edward,Janssen, Paul A.J.
, p. 2235 - 2239 (2007/10/03)
The synthesis and anti-HIV-1 activity of a series of diarylpyrimidines (DAPYs) are described. Several members of this novel class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) are extremely potent against both wild-type and a panel of clinically significant single- and double-mutant strains of HIV-1.