26478-05-7Relevant articles and documents
Asymmetric total synthesis of the proposed structure of the medicinal alkaloid jamtine using the chiral base approach.
Simpkins, Nigel S,Gill, Christopher D
, p. 535 - 537 (2003)
[reaction: see text] A highly step-economic asymmetric synthesis of the tetracyclic structure assigned to the medicinal alkaloid jamtine has been accomplished using a chiral lithium amide base desymmetrization of a ring-fused imide. The structure synthesi
Multimetallic iridium-tin (Ir-Sn3) catalyst in N-acyliminium ion chemistry: Synthesis of 3-substituted isoindolinones via intra- and intermolecular amidoalkylation reaction
Maity, Arnab Kumar,Roy, Sujit
, p. 2627 - 2642 (2014/09/30)
The multimetallic iridium-tritin (Ir-Sn3) complex [Cp*Ir(SnCl3)2{SnCl2(H2O) 2}] (1) proved to be a highly effective catalyst towards C-OH bond activation of γ-hydroxylactams, leading to a nucleophilic substitution reaction known as the α-amidoalkylation reaction. Catalyst 1 can be easily synthesized from the reaction of (pentamethylcyclocyclopentadienyl)iridium dichloride dimer {[Cp*IrCl2]2} and tin(II) dichloride (SnCl2). In terms of catalyst loading, reaction conditions and yields of the product formed, 1 is found to be superior compared to classical Lewis acid catalysts. Different carbon (arenes, heteroarenes, allyltrimethylsilane, 1,3-dicarbonyls) and heteroatom (alcohols, thiols, amides and sulfonamides) nucleophiles have been successfully employed in the intramolecular and intermolecular alkylations, as well as in heterocyclization reactions. In the majority of cases good to excellent yields of 3-substituted isoindolinones and 5-substituted pyrrolidin-2-ones have been obtained. Besides, the reactions are also atom economical and salt free. It is proposed that the multimetallic Ir-Sn3 catalyst behaves as a mild and selective Lewis acid to activate the γ-hydroxylactam towards the formation of the N-acyliminium ion; the latter being trapped by potent nucleophiles leading to the desired products.
Application of the chiral base desymmetrisation of imides to the synthesis of the alkaloid jamtine and the antidepressant paroxetine
Gill, Christopher D.,Greenhalgh, Daniel A.,Simpkins, Nigel S.
, p. 9213 - 9230 (2007/10/03)
The synthesis of the alkaloid jamtine and the antidepressant paroxetine have been addressed by a strategy involving asymmetric desymmetrisation of prochiral imides by a chiral lithium amide base. A short reaction sequence, starting with a cyclohexane fused succinimide, led to the structures originally reported for the alkaloid jamtine and its derived N-oxide. The structures synthesised are shown not to correspond with those originally reported. A second sequence involves desymmetrisation of a 4-arylglutarimide, and provides a short enantioselective synthesis of the drug substance paroxetine.