2772-60-3Relevant articles and documents
Rapid and efficient synthesis of N-alkylbenzamides under microwave irradiation
Cermak, Jan K.,Kolar, Karel,Cirkva, Vladimir
, p. 126 - 130 (2013)
The microwave-assisted synthesis of N-alkylbenzamides from benzoic acid and primary aliphatic amines has been developed under solvent-free conditions. The different solid catalysts have been investigated. The suggested synthesis is environmentally friendly and excellent yields (97-99 %) have been reached.
Remarkably Efficient Iridium Catalysts for Directed C(sp2)-H and C(sp3)-H Borylation of Diverse Classes of Substrates
Chattopadhyay, Buddhadeb,Hassan, Mirja Md Mahamudul,Hoque, Md Emdadul
supporting information, p. 5022 - 5037 (2021/05/04)
Here we describe the discovery of a new class of C-H borylation catalysts and their use for regioselective C-H borylation of aromatic, heteroaromatic, and aliphatic systems. The new catalysts have Ir-C(thienyl) or Ir-C(furyl) anionic ligands instead of the diamine-type neutral chelating ligands used in the standard C-H borylation conditions. It is reported that the employment of these newly discovered catalysts show excellent reactivity and ortho-selectivity for diverse classes of aromatic substrates with high isolated yields. Moreover, the catalysts proved to be efficient for a wide number of aliphatic substrates for selective C(sp3)-H bond borylations. Heterocyclic molecules are selectively borylated using the inherently elevated reactivity of the C-H bonds. A number of late-stage C-H functionalization have been described using the same catalysts. Furthermore, we show that one of the catalysts could be used even in open air for the C(sp2)-H and C(sp3)-H borylations enabling the method more general. Preliminary mechanistic studies suggest that the active catalytic intermediate is the Ir(bis)boryl complex, and the attached ligand acts as bidentate ligand. Collectively, this study underlines the discovery of new class of C-H borylation catalysts that should find wide application in the context of C-H functionalization chemistry.
CuO-decorated magnetite-reduced graphene oxide: a robust and promising heterogeneous catalyst for the oxidative amidation of methylarenes in waterviabenzylic sp3C-H activation
Ebrahimi, Edris,Khalafi-Nezhad, Ali,Khalili, Dariush,Rousta, Marzieh
, p. 20007 - 20020 (2021/11/12)
A magnetite-reduced graphene oxide-supported CuO nanocomposite (rGO/Fe3O4-CuO) was preparedviaa facile chemical method and characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), UV-vis spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), Brunauer-Emmett-Teller (BET) analysis, vibrating-sample magnetometry (VSM), and thermogravimetric (TG) analysis. The catalytic activity of the rGO/Fe3O4-CuO nanocomposite was probed in the direct oxidative amidation reaction of methylarenes with free amines. Various aromatic and aliphatic amides were prepared efficiently at room temperature from cheap raw chemicals usingtert-butyl hydroperoxide (TBHP) as a “green” oxidant and low-toxicity TBAI in water. This method combines the oxidation of methylarenes and amide bond formation into a single operation. Moreover, the synthesized nanocomposites can be separated from the reaction mixtures using an external magnet and reused in six consecutive runs without a noticeable decrease in the catalytic activity.
Effect of Precatalyst Oxidation State in C-N Cross-Couplings with 2-Phosphinoimidazole-Derived Bimetallic Pd(I) and Pd(II) Complexes
Martinez, Erin E.,Moreno, Mariur Rodriguez,Barksdale, Caleb A.,Michaelis, David J.
supporting information, p. 2763 - 2767 (2021/08/27)
We report the catalytic activity of two phosphinoimidazole-derived bimetallic palladium complexes in Pd-catalyzed amination reactions. Our studies demonstrate that the starting oxidation state (Pd(I) or Pd(II)) of the dimeric complex has a significant effect on the efficiency of the catalytic reaction. The corresponding Pd(I) complex shows higher reactivity in Buchwald-Hartwig aminations, while the Pd(II) complex is much more reactive in carbonylative amination reactions. These new dimeric palladium complexes provide good to excellent reactivity and yields in the amination reactions tested.
Metal-Free Selective Modification of Secondary Amides: Application in Late-Stage Diversification of Peptides
Adebomi, Victor,Sriram, Mahesh,Streety, Xavier,Raj, Monika
supporting information, p. 6189 - 6193 (2021/08/01)
Here we solve a long-standing challenge of the site-selective modification of secondary amides and present a simple two-step, metal-free approach to selectively modify a particular secondary amide in molecules containing multiple primary and secondary amides. Density functional theory (DFT) provides insight into the activation of C-N bonds. This study encompasses distinct chemical advances for late-stage modification of peptides thus harnessing the amides for the incorporation of various functional groups into natural and synthetic molecules.
NaOTs-promoted transition metal-free C-N bond cleavage to form C-X (X = N, O, S) bonds
Chen, Wei,Liu, Sicheng,Liu, Tingting,Majeed, Irfan,Ye, Xiaojing,Zeng, Zhuo,Zhang, Yuqi,Zhu, Yulin
supporting information, p. 8566 - 8571 (2021/10/20)
Multifunctional transformation of amide C-N bond cleavage is reported. The protocol applies to benzamide, thioamide, alcohols, and mercaptan under similar reaction conditions catalyzed by NaOTs. It is noteworthy that NaOTs can not only be recycled and reused for up to three cycles without significant loss in catalytic activity, but also catalyze gram-grade reactions. This study provides a novel solution with mild conditions and a simple procedure for transformation of multiple amides.
Method for preparing amide compound by photocatalysis of organic amine
-
Paragraph 0040-0041, (2021/06/06)
The invention relates to the technical field of organic synthesis, in particular to a method for preparing amide compounds through photocatalysis of organic amine. The preparation method comprises the following steps: mixing tetrahalomethane with a solvent, sequentially adding an amine compound, a catalyst and organic carboxylic acid, performing stirring and reacting under an oxygen-containing atmosphere and an illumination condition, and performing separating and purifying to obtain the amide compound with a structure shown in formulas V-VII. According to the method, the reaction is carried out in the air atmosphere under the illumination condition at room temperature and normal pressure, the reaction condition is mild, the raw material source is wide, the cost is low, the byproduct generated after the reaction is the halogen simple substance, the added value is high, a large amount of waste is avoided, and the method has higher atom economy and environmental friendliness and is beneficial to large-scale production.
Graphene oxide: A convenient metal-free carbocatalyst for facilitating amidation of esters with amines
Patel, Khushbu P.,Gayakwad, Eknath M.,Shankarling, Ganapati S.
, p. 2661 - 2668 (2020/02/20)
Herein, we report a graphene oxide (GO) catalyzed condensation of non-activated esters and amines, that can enable diverse amides to be synthesized from abundant ethyl esters forming only volatile alcohol as a by-product. GO accelerates ester to amide conversion in the absence of any additives, unlike other catalysts. A wide range of ester and amine substrates are screened to yield the respective amides in good to excellent yields. The improved catalytic activity can be ascribed to the oxygenated functionalities present on the graphene oxide surface which forms H-bonding with the reactants accelerating the reaction. Improved yields and a wide range of functional group tolerance are some of the important features of the developed protocol.
Triethyl Phosphite/Benzoyl Peroxide Mediated Reductive Dealkylation of O-Benzoylhydroxylamines: A Cascade Synthesis of Secondary Amides
Aegurla, Balakrishna,Mandle, Ram D.,Shinde, Prasad G.,Parit, Ratan S.,Kamble, Sanjay P.,Sudalai, Arumugam,Senthilkumar, Beeran
supporting information, p. 4235 - 4238 (2020/07/04)
A new triethyl phosphite/benzoyl peroxide (BPO) mediated system has been developed for the synthesis of secondary amides with good to excellent yields in a single step. This unprecedented cascade process involves sequential reduction of N–O bond and benzoylation followed by dealkylation of N–C bond of O-benzoylhydroxylamines (O-BHA). The methodology is versatile as it tolerates a variety of aromatic and aliphatic O-BHA as substrates to access secondary amides.
Potassium tert-Butoxide Prompted Highly Efficient Transamidation and Its Coordination Radical Mechanism
Tan, Zhiyong,Li, Zhenhua,Ma, Yao,Qin, Jinjing,Yu, Chuanming
supporting information, p. 4538 - 4545 (2019/07/18)
A simple and highly efficient protocol was developed for the transamidation of N,N-disubstituted amides with primary amines in the presence of tBuOK, affording desired products in good to excellent yields. This reaction proceeded under nitrogen atmosphere and featured extensive substrate tolerance. Experimental investigation suggested that a coordination radical process enhanced this transformation.